Однофазный двигатель: 90 фото и подробное описание механизма

Однофазный асинхронный электродвигатель — устройство, принцип работы

Практически всем хорошо известны трехфазные электродвигатели, они широко применяются в промышленности, позволяют решать самые различные задачи. Да и принцип получения переменного тока, как физической величины мы привыкли рассматривать на примере тех же трехфазных асинхронных генераторов. Но как быть в бытовых условиях, где присутствует только одна фаза, народные умельцы научились выполнять подключение трехфазных электрических машин, но это не обязательно. На практике давно используется однофазный асинхронный электродвигатель, который может выполнять все свои функции даже в домашней сети переменного тока.

Конструктивные особенности

Если сравнивать однофазный электродвигатель с другими электрическими машинами, то конструктивно он также состоит из подвижного и неподвижного элемента — статора и ротора. Статор, за счет протекания электрического тока по его обмоткам, создает магнитное поле, вступающее во взаимодействие с ротором. В результате электромагнитного взаимодействия ротор приводится во вращение.

Рис. 1. Конструкция однофазного асинхронного электродвигателя

Однако все не так просто, как может показаться на первый взгляд, если бы вы убрали из обычного трехфазного электродвигателя лишние две обмотки и подключили в розетку, вращение бы не началось. Мотору попросту не хватит момента для вращения ротора. Поэтому конструкция однофазного асинхронного электродвигателя имеет ряд особенностей.

Ротор

Ротор однофазного электродвигателя представляет собой такой же металлический вал, который оснащается обмоткой. На валу собирается ферромагнитный каркас из шихтованной стали по ее внешней поверхности проделываются пазы. В пазах на валу ротора устанавливаются стержни из меди или алюминия, которые выступают в роли обмотки, проводящей электрический ток. На концах стержни соединяются двумя кольцами, из-за такой конструкции его также называют беличьей клеткой.

При воздействии электромагнитного потока от статора на короткозамкнутые обмотки ротора в беличьей клетке начинает протекать ток. Ферромагнитная вставка на валу помогает усилить поток, проходящий через него. Однако далеко не во всех моделях существует магнитный проводник, в некоторых он выполняется из немагнитных сплавов.

Статор

Конструкция статора в однофазном электродвигателе имеет такой же состав, как и в большинстве электрических машин:

  • металлический корпус;
  • установленный внутри магнитопровод из ферромагнитного материала;
  • обмотка статора, представленная медными проводниками.

Обмотки статора такого электродвигателя подразделяются на две – основную, она же рабочая, через которую осуществляется постоянная циркуляция нагрузки и пусковая, которая задействуется только в момент запуска. Обе обмотки однофазного двигателя расположены под углом 90° друг относительно друга. Такая конструкция делает их схожими с двухфазными электродвигателями, где также применяются две обмотки.

Но их объем, относительно всего пространства асинхронного двигателя отличается, основная составляет только 2/3 от общего числа пазов, а пусковые обмотки занимают 1/3.

Принцип работы

Принцип действия однофазного асинхронного электродвигателя заключается в создании пульсирующего магнитного потока от протекания электрического тока по основной обмотке статора, если рассматривать вариант пуска от вспомогательного витка. Таким образом, подключение однофазного мотора к сети мы рассмотрим на примере одно витка.

Рис. 2. Принцип формирования магнитного потока в статоре

Как видите на рисунке выше, переменный электрический ток, протекая по проводнику, согласно правила буравчика, создает концентрические магнитные потоки. При появлении максимума синусоиды магнитный поток также достигнет своего максимума. Однако в сети однофазного переменного электрического напряжения ток меняет свое направление движения в витке с частотой в 50 Гц. Это означает, что как только кривая пересечет ось абсцисс, ток будет протекать по витку обмотки в противоположном направлении и создаваемый ним магнитный поток получит противоположные полюса и направленность результирующего вектора:

Рис. 3. Формирование потока обратного направления

С физической точки зрения оба потока равнозначны, поэтому их смена с периодичностью 100 раз в секунду даст нулевой результат при сложении. Прямой магнитный поток окажется равным обратному:

Это означает, что если в таком поле окажется ротор электродвигателя, вращаться он не будет. 100 раз в минуту в нем произойдет смена магнитного потока, и короткозамкнутый ротор будет просто гудеть, оставаясь на месте. Однако ситуация в корне измениться, если возникнет импульс к начальному движению. В таком случае появиться скольжение, которое и приведет к постоянному вращению вала:

  • n1 – частота вращения магнитного поля однофазного электродвигателя;
  • n2 – частота вращения ротора асинхронного электродвигателя;
  • S – величина скольжения однофазного индукционного мотора.

При смене магнитного потока направление вращения и поля статора и ротора электродвигателя совпадут, поэтому скольжение получит иное выражение для вычисления:

Попеременное пересечение стержней магнитными потоками разного направления создаст в них ЭДС, которая сгенерирует электрический ток в роторе и ответный магнитный поток. А он, в свою очередь, также вступит во взаимодействие с полем статора однофазного электродвигателя, как показано на рисунке ниже.

Читайте также:
Навесной потолок своими руками из гипсокартона

Рис. 4. Получение ЭДС в роторе

Как видите, чтобы подключить трехфазный электродвигатель, достаточно подать на него напряжение, но с однофазным такой вариант не сработает.

Для запуска мотора необходим первичный импульс, который на практике может быть получен посредством:

  • раскрутки вала вручную;
  • кратковременного введения пусковой катушки;
  • расщепления магнитного поля короткозамкнутым контуром.

Из вышеприведенных способов сегодня первый используется только в лабораторных экспериментах, из практического применения он вышел из-за опасности травмирования оператора.

Схемы подключения

Для получения базового импульса вращения могут использоваться различные схемы подключения. Со временем, некоторые из них утрачивали свою актуальность и сменялись более прогрессивными, поэтому далее мы рассмотрим наиболее эффективные, которые применяются и сейчас.

С пусковым сопротивлением

Так как в индукционных электродвигателях сопротивление обмоток имеет комплексную форму, вектор магнитного потока можно легко сместить, если в пусковую обмотку добавить сопротивление. Наличие активной составляющей даст необходимый угол сдвига между рабочими катушками однофазного электродвигателя и пусковой, от 15° до 50°, что и обеспечит разницу для начального вращения.

Рис. 5. Схема с пусковым сопротивлением

С конденсаторным запуском

В отличии от предыдущего способа, в схеме с конденсаторным пуском электродвигателя применяется емкостной элемент, который позволяет сместить электрические величины в основной и пусковой катушках на 90°, обеспечивая максимальное усилие.

Рис. 6. Схема с конденсаторным пуском

На практике пусковой конденсатор вместе с дополнительной обмоткой вводятся кнопкой пуска одновременно с подачей основного питания. Пусковая кнопка устроена таким образом, что контакт Cn возвращается пружиной в изначальное положение, сразу после окончания конденсаторного запуска.

С расщепленными полюсами

В отличии от конденсаторных двигателей, такой способ пуска предусматривает наличие особой конструкции статорного магнитопровода. В этом случае каждый полюс разделяется на два, один из которых комплектуется короткозамкнутым витком, изменяющим характеристики магнитного потока.

Рис. 7. Схема с расщепленными полюсами

Существенным недостатком этого метода пуска однофазного электродвигателя является постоянная потеря мощности и снижение КПД мотора. Поэтому его применяют только в электрических машинах до 100 кВт.

Область применения

Однофазные электродвигатели находят широкое применение в бытовых устройствах или промышленных аппаратах малой механизации. Они охватывают относительно маломощное однофазное оборудование, которое питается от 220В.

Это различные станки для обработки древесины, металла, пластика и т.д. Также однофазные электродвигатели используются в установках сельскохозяйственной отрасли для смешивания зерновых, изготовления бетона и т.д. В быту их применяют в некоторых моделях микроволновок, вытяжек, стиральных машин и куллеров, питающихся от однофазного источника.

Видео по теме

Поделиться в социальных сетях

Комментарии и отзывы (8)

Евгений

Прошу прощения за ошибку -конечно же «расщепленный статор»

Евгений

Статья правильная и полезная. Я сам не электрик, но когда потребовалось самостоятельно подключить однофазный асинхронный электродвигатель с короткозамкнутым витком (кольцом) пересмотрел несколько букварей чтобы понять суть работы и способ подключения. Помог ваш рисунок с расщепленным ротором. Спасибо!

Руслан

Чего восторженные отзывы — не понял, статья слабая и малоинформативная.
ошибок куча. например: 1. конденсаторные 1ф ЭД чаще не с пусковой обмоткой, а с обоими рабочими. так КПД выше и на много; 2. какие 100кВт у двигателя с расщеплёнными полюсами. их больше 100 ВАТТ не делают, у них КПД ДО 50%!
самые мощные ОДНОфазные ЭД на единицы киловатт делают и только конденсаторные, причём, конденсаторы включены постоянно. например, движки насосов.

Макаров Дмитрий (Эксперт)

Вы не поняли отзывов по той простой причине, что невнимательно читали статью или не вникали в ее смысл. Вы путаете пусковой и рабочий конденсатор – это как Крым и Рим, звучит похоже, но совершенно разные вещи!

На рисунке выше показано, что есть схема:

  • только с пусковой обмоткой и таким же пусковым конденсатором, о которой говорилось в статье;
  • второй – только с рабочим конденсатором, который присутствует в схеме питания электродвигателя постоянно;
  • третий вариант включает и конденсатор для пуска, и рабочий – одни присутствует для увеличения момента в начале вращения, второй поддерживает смещение постоянно.

Далее разберем, в чем вы ошибаетесь.

Первое, в статье четко описано, почему однофазный двигатель (именно с одной обмоткой для одной фазы) не может начать вращаться от сети с одной фазой самостоятельно. Поэтому и существует несколько способов для приведения вала в начальное вращение, один из которых – это конденсаторный пуск. Пусковой конденсатор вводится с пусковой обмоткой на короткий промежуток времени, чтобы образовался сдвиг в магнитном поле, который приведет ротор в начальное вращение. Благодаря тому, что пусковая обмотка имеет большее сечение, ток в ней значительно больше тока в витках рабочей на этапе включения, создает более сильный магнитный поток, который и воздействует на ротор со смещением на величину емкости.
Затем и конденсатор, и пусковая обмотка выводится из работы, так как их функция уже выполнена и ротор начал вращаться. Ток продолжает протекать только в рабочей обмотке двигателя. Если бы пусковая обмотка, как вы написали выше, оставалась в работе постоянно, то произойдет смещение магнитного поля и его форма станет менее эффективной, что снизит КПД однофазной электрической машины.

Читайте также:
Подключение газа к частному дому: Обзор вариантов газификации +Видео обзор

А вот то, о чем вы пишите, называется рабочим конденсатором, а не пусковым – это две большие разницы. Рабочий конденсатор действительно вводится в схему работы электродвигателя на постоянной основе, но это делается не для однофазных двигателей, а минимум, для двухфазных, которые подключаются к бытовой сети. В двухфазной модели, в отличии от однофазной нет пусковой обмотки, в нем обе рабочие, одинаковые по сечению проводников, объему и с симметричным расположением. Так как в однофазной сети подача напряжения на обе обмотки никакого вращения не даст, вторую обмотку действительно подключают через рабочий конденсатор, что и дает возможность воздействовать на ротор. Но это не тот вариант, когда КПД двигателя достигнет своего максимума – скорее вынужденный режим. Таким же способом, через рабочий конденсатор может включаться и трехфазный двигатель к однофазной сети, но КПД от его работы будет еще ниже.

По поводу мощности двигателей с расщепленными полюсами, то это естественно, что сегодня вы встречаете только маломощные модели, которые применимы для вентиляторов, некоторых логических приводов и т.д. Технология, разработанная в 1890 году, в наше время утратила актуальность для электрических машин большой мощности из-за наличия других способов пуска, за счет совершенствования электроники и т.д. Однако еще при союзе, когда не считали каждый киловатт электроэнергии, ее действительно применяли в электродвигателях до 100кВт, как одну из прогрессивных технологий того времени. Поэтому и сегодня вы еще можете встретить применение подобных агрегатов в учебных лабораториях и некоторых предприятиях, где их еще не заменили, а вот в продаже вряд ли.

Руслан

Автор пишет, о том, что ОСНОВНЫМ методом запуска и работы ОЭД является применение пусковой обмотки, при этом рабочая — одна. Я не согласен с ЭТОЙ формулировкой, а не с теоретическими выкладками. И теорию вопроса я знаю не хуже Вас, уж поверьте.
сейчас ВСЕ устройства, изготавливаемые человеком идут по пути удешевления и упрощения, поэтому, применение именно пусковых обмоток НЕ выгодно: энерговооружённость машины мала (одна из обмоток в работе НЕ участвует, но её надо изготовить, и она должна быть), нужен пусковой элемент с силовым контактом (контакты в электрике — самое слабое место).
про 100кВт однофазный электродвигатель: теоретически можно сделать всё что угодно, а зачем. говорите: «в СССР не считали каждый кВт электроэнергии». может поэтому этой страны теперь и нет… если бы считали ресурсы, было бы всё по другому?
есть теоретические изыскания, а есть экономическое обоснование. асинхронные электродвигатели — это самые простые (читай, надёжные и дешёвые) электрические машины, поэтому их большинство. НО, они имеют отвратительную внешнюю характеристику (однофазные — в особенности), поэтому, если у исполнительного механизма особые требования к приводу, то применяются или электромашины другого типа, или питание специальных асинхронных двигателей от частотных преобразователей.

Макаров Дмитрий (Эксперт)

Да, в тексте написано, что однофазный асинхронный электродвигатель имеет две обмотки – одна из них рабочая, а вторая используется для подачи импульса, который обеспечивает начальный ход ротора. Как только возникает разность вращения ротора и воздействия электромагнитного поля, пусковая катушка, она же пусковой виток, выводится из электрической цепи. Поэтому в работе остается только одна обмотка, из-за чего в тексте и говориться, что рабочая обмотка одна.

Ваше понимание удешевления вообще не подходит к мировым тенденциям – в одном случае выгодно обойтись без пусковой обмотки, а в другом, наоборот, именно пусковая обмотка и обеспечивает необходимую экономию, а если рассмотреть однофазную асинхронную машину, то у нее это один виток. Если послушать, что вы говорите о контактах, так со смеху можно упасть! Да это слабое место, согласен, но вы можете себе представить, что в мире перестали выпускать щеточные двигатели, у которых этот самый контакт является скользящим и находится в режиме постоянного транзита электротока? Износ сумасшедший, расход материала на контакты никого не интересует, по той причине, что это наиболее рациональное решение для определенных технологических процессов.

Читайте также:
Светодиодный светильник под шкафы на кухню — подсветка рабочей зоны в помощь хозяйке

Вот то, что каждый тип электрической машины применяется в соответствии со своими техническими параметрами – это однозначно верно. Асинхронные машины действительно самые дешевые и простые в работе, за счет чего получили такое широкое распространение. Но никто и не говорит, что они должны вытеснить все остальные виды агрегатов.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Читайте также:
Размеры и характеристики пенополистирола

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Перекидные рубильники для генераторов: схемы подключения

Чтобы получить возможность переключать электроэнергию на необходимые приборы, устанавливают специальные устройства — перекидные рубильники. Важной частью их конструкции являются блокираторы. На рынке представлены разные варианты подобных устройств, их различают в первую очередь по рабочим характеристикам.

  • Однополюсные рубильники
  • Двухполюсные рубильники
  • Схемы подключения
    • Однофазная сеть
    • Двухфазная сеть
    • Трехфазная сеть
  • Рубильник перекидной для генератора
Читайте также:
Рулонные шторы в интерьере - все о конструкции, управлении, светопропускании и дизайне

Нужно учитывать, что приборы подключаются с применением различных схем в зависимости от типов электросетей. Их рабочие параметры можно отрегулировать с помощью блоков управления. Также подобные рубильники используются на промышленных производствах, где обслуживают резервные генераторы.

Чтобы понимать особенно схемы подключения, необходимо ознакомиться с типами устройств, которые представлены в нашей стране.

Однополюсные рубильники

Во многих случаях применяются устройства с одними модулем. В таких модификациях медные проводники. Важно знать, что их следует применять для обслуживания генераторов, рабочий диапазон частот которых не выше 20 Гц. Есть и определенные минусы, которые учитываются при выборе.

Важный нюанс: предельная нагрузка в процессе использования не должна превышать 200 А. Потому их не устанавливают в жилых домах, где есть значительное потребление электроэнергии. Еще одна особенность: низкие показатели выходного напряжения, преимущественно 200 В.

Двухполюсные рубильники

Именно рубильник перекидной на два направления устанавливают в многоэтажных домах. Его можно эксплуатировать для обслуживания агрегатов, подключенных как к однофазным, так и двухфазным системам. Средние показатели отрицательного сопротивления находятся на уровне 60 Ом.

Выходное напряжение может быть неодинаковым, определяется модификацией устройства. Часто используются приборы из серии РР20 с открытыми конденсаторами. При их подключении не обойтись без блоков питания с рабочим напряжением 300 В.

Схемы подключения

Стоит понимать, что процедура подключения может отличаться и зависит в первую очередь от типа электрических сетей.

Однофазная сеть

К однофазной сети возможно подключить только двухполюсные устройства. Также необходимо иметь блок питания с рабочим напряжением 300 В.

  • В подобных модификациях отрицательное сопротивление достигнет отметки 50 Ом. Иногда такие рубильники дополняют счетчики. А вот переключатели встречаются нечасто.
  • Выбирая перемычки, обеспечивающие контакты, учтите, что покупать следует исключительно медные.
  • Перед установкой приспособления в жилом доме следует убедиться в том, что там есть электрощиты серии КК220 либо другие. Из-за возможных несоответствий в рабочих характеристиках реверсные блоки не применяются для однофазных цепей.

Двухфазная сеть

В двухфазных цепях соединяющим элементом выступает блок питания на 200 В. Помните, что для этих устройств применяются только переключатели расширительного типа. Тогда рубильники можно будет использовать в однофазной сети вне зависимости от количества применяемых модулей. Предельное напряжение на уровне 300 В. Чаще всего выбирают изделия серии РР30.

  • В соответствии с особенностями конструкции, они комплектованы только двумя модулями, это значит, что выходное напряжение будет соответствовать значению 350 В.
  • Блокираторы могут быть неодинаковыми. Перед эксплуатацией в жилых домах следует удостовериться в том, что там есть электрощиты. Это обязательное условие. Блоки управления традиционно составлены из тиристоров.
  • Предел отрицательного сопротивления — 40 Ом. Системы контактов применимы только в моделях закрытого типа. Контроль колебаний электроэнергии обеспечивают проходные конденсаторы.
  • Реверсивный блок поддерживает необходимую частоту тока. Если будут использованы две разные модели, их обязательно необходимо сочетать с контроллером. Это позволит свести к минимуму негативное воздействие нелинейных искажений, время от времени проявляющихся в сети.

Трехфазная сеть

Блоки питания для трехфазных сетей должны обладать рабочим показателем напряжения 400 В. Стоит отметить, что здесь могут применяться только импульсные трансформаторы.

  • Сама процедура подключения выполняется посредством инвертирующего выхода. Выходной ток подается через специальные устройства, роль которых выполнят проходные конденсаторы. Есть смысл в применении двухмодульных рубильников.
  • На рынках предлагаются и одномодульные модификации. Их главная особенность в том, что минимальный предел порогового напряжения находится на уровне 350 В, отрицательное сопротивление — 55 Ом. В конструкции рубильника обязательно должен присутствовать блокиратор.
  • В жилых домах должны быть специальные электрощиты серии КК22. В таких конструкциях блоки управления могут составляться не только из тиристоров, но и динисторов.

Рубильник перекидной для генератора

Для генераторов выбирать следует только рубильники перекидного типа, одномодульные. В блокираторе должна быть классическая система контактов. В реверсивных блоках, как правило, предусмотрены контроллеры. По этой причине модели с резонаторами использовать не рекомендуется.

В подобных случаях пороговая частота будет на достаточно высоком уровне. Рубильники здесь могут быть неодинаковых размеров. Стоит обратить внимание на количество проходных конденсаторов, которые используются.

Перед началом установки необходимо тщательно изучить систему заземления. Прибор сможет эффективно только со специальным заземляющим электродом. На маркировке электродов обязательно указывают степень защиты и ее систему. В отечественных магазинах преимущественно предлагаются электроды ИП30 с достаточно прочной изоляцией, что обеспечит системе большое количество рабочих циклов.

Читайте также:
Профнастил для крыши: размеры листа - длина, ширина, толщина, срок службы оцинкованного кровельного покрытия

Выбирая перекидные рубильники для генератора, необходимо учесть, что они применяются в однофазной сети. В их конструкции два проходных конденсатора. Но в продаже можно найти не только двухмодульные, но и трехмодульные изделия. В схеме подключения может быть предусмотрено и подсоединение счетчика. Сама установка выполняется посредством медных перемычек. Переключатели должны быть только расширительными.

Для устройств подойдут любые электрощиты. Пороговое напряжение — 350 В. Средние параметры нагрузок могут достигать отметки в 30 А.

Рубильники для генераторов — эффективное решение, имеющее ряд преимуществ. Их удобно обслуживать, можно контролировать рабочие параметры электрических сетей, избегая аварийных ситуаций, которые могут выводить из строя подключенное оборудование.

Перекидной рубильник для генератора — подробная инструкция, как выбрать и подключить к сети дома своими руками

Для переключения потока электроэнергии между различными агрегатами, подключают к этому процессу специальные приборы, именуемые перекидными рубильниками.

В основе этого изделия выделяют блокираторы. В продаже имеется большой спектр этих устройств. Все они имеют разные модификации, позволяющие использовать рубильник в нужном функционале.

Эти устройства подключают в согласовании с заранее составленной схемой. Правильность работы перекидного рубильника специальным электронным блоком в общей схеме. Нередко устройства данного разряда применяются в промышленности.

Для более детального понимания подключения прибора, нужно знать, какие виды приборов доступны в обиходе.

Содержимое обзора

Варианты конструкций рубильников

Прибор может обеспечивать поток питания на один общий сегмент, либо на два потока.

Однополюсный вариант

Эта система прибора весьма распространенная. Работает на один модуль, имеет медные проводники. Применяются в тандеме с генераторами, имеющими параметры рабочего действия частоты более 20 Гц.

Для данных рубильников характерна нагрузка до 200 А, поэтому они как правило не применяются в помещениях с людьми.

Двухполюсный вариант

Такие устройства применяются в тех зданиях, где есть население. Допускаются варианты использования прибора для разных систем питания. Сопротивление тут составляет 60 Ом. Выходное напряжение зависит от типа агрегата.

Эксплуатация бензогенератора

Такую работу по подключению можно выполнить самому. Для этого нужно применить максимум усидчивости и внимательности к каждому своему действию. Любая работа с электрическими приборами требует особого отношения к таким видам осуществления этой деятельности.

На начальном этапе подбирается помещение под эксплуатацию бензогенератора. Оно должно быть хорошо проветриваемым, желательно дополнительно иметь систему вытяжки воздуха. Не менее важна звукоизоляция помещения.

После установки генератора проводятся провода от него до щитка дома. Перекидной переключатель используется в схеме при присоединении бензинового генератора к ДЭС.

Его применение очень удобно при работе генератора в следующих случаях:

  1. При имеющемся напряжении в сети, рубильник ставится в первое положение.
  2. При отсутствии напряжения, необходимо отключить автоматические выключатели. Переключить рубильник сначала в нулевое положение, затем во второе.
  3. Запускаем стартер бензогенератора.

Появление электроэнергии в помещении будет сигнализировать светодиод, установленный на счетчике учета в щитке. Он при этом мигает.

При появлении электричества в сети, генератор нужно отключить, а рубильник переключить в первоначальное положение.

Особенности подключения рубильников

Технология и ввод в эксплуатацию рубильников иногда не совпадают с типом электросети.

Двухходовая модификация

Рубильники такого плана применяются к однофазному току. Он содержит конденсаторы. Еще они бывают как двухмодульные, так и трехмодульные.

В схеме ставится блок питания. Работает он на 300 В. Подключение делается через счетчик, перемычки у них состоят из меди. А переключатели расширительные.

  • Электрический щиток может быть любой.
  • Рубильник ограничивает подачу тока на него.
  • Напряжение в сети при этом не более 350 В.
  • Допустимая сила тока в пределах 30 А.
  • Конкретные параметры прибора указываются в руководстве по эксплуатации.

Одна фаза

Здесь используется рубильник двухкомпонентного вида. В схеме должен быть задействован блок, обеспечивающий энергоснабжение в пределах 300 В. Сопротивление в 50 Ом обеспечивает нормальную работу.

Включение двух счетчиков рубильником осуществляется одновременно. В его перемычках соответственно используется также медь.

При монтаже, а в последствии и эксплуатации рубильников в помещениях, где будут проживать люди, необходимо использовать щиты с определенным классом защиты. В сети преобладает часто расхождение в значениях приборов, в связи с этим не стоит задействовать реверсные устройства.

Две фазы

Блок подачи тока 200 В. Он ведет себя при этом, объединяющем элементом. Переключение приборов доступно в расширительном использовании конструкции.

  • Это преимущество представляет возможным работать агрегату в 2-х фазных линиях тока.
  • В данном случае не имеется ограничений по числу модулей.
  • Здесь ограничение напряжения будет в 300 В. Общая нагрузка на рубильник ложится, в пределах 20 А.
Читайте также:
Перламутровая краска – особенности, правила нанесения

Три фазы

В этой системе сети электричества рубильник схематично задействован с компонентами, обеспечивающими питание, поддерживающими напряжение около 400 В.

В таком напряжении задействованы особые трансформаторы, именуемые импульсными. Тут нужно использовать двухмодульный вариант рубильника.

  • Рубильники на один модуль используют напряжение не выше 350 В, при сопротивлении 55 Ом.
  • Присутствует компонент блокиратора.
  • В зданиях, где постоянно присутствуют люди, используется дополнительная защита щитовых блоков.
  • В схеме блока управления применяются тиристоры и динисторы, с соответствующими параметрами.

Заземление генератора

Во всех работах требуется соблюдать технику безопасности. Подключение генератора не исключение.

При подключении бензинового или дизельного генератора к сети создается контур заземления

Процесс заземления прост.

  1. В землю вбивается металлический пруток длинной 150 см.
  2. Диаметр прута составляет полтора сантиметра.
  3. Хорошее заземление агрегата получается, если прут полностью в земле, за исключением 7-10 см выступа с земли.
  4. Далее соединяем прут с клеммой на генераторе, имеющей значок подводки заземления. Для этого используем медный провод.

Безопасность работы генератора сказывается на жизни и здоровье окружающих людей. При его эксплуатации рекомендуется следующее:

  • Расположение генераторов от емкостей с горючими, и легковоспламеняющимися материалами должно быть достаточным.
  • Помещения, где устанавливается генератор должны хорошо проветриваться.
  • Если агрегат стоит под открытым небом, рекомендуется сделать под него навес от дождя.
  • Если он в помещении, то температура в нем должна быть в пределах эксплуатации, указанной в инструкции по применению.
  • При заправке аппарата требуется его выключение.
  • Обязательное заземление

Онлайн помощник домашнего мастера

Перекидной рубильник – правила подключения, сфера применения и основные виды. ТОП-лучших производителей перекидных рубильников для генератора!

Перекидной рубильник – особое приспособление, предназначенное для переключения электроэнергии на необходимые устройства, работающее при помощи ручного привода. Производители предлагают широкий ассортимент таких аппаратов, отличающихся между собой различными техническими характеристиками.

Немаловажно помнить, что существуют различные варианты подключения перекидных рубильников – выбор зависит от особенностей электросети. Наиболее популярны рубильники перекидного типа в жилых зданиях. Чтобы изменить рабочие характеристики таких аппаратов, применяют блоки управления.

Кроме этого, данные приспособления нашли применение в промышленности при эксплуатации резервных генераторов. Подбирая перекидной рубильник для генератора, нужно учитывать его комплектацию и специфику существующего заземления.

Качество работы аппарата обеспечивается за счёт оснащения заземляющим электродом. На его маркировке указывается степень защиты. Оптимально, если это ИП30.

Краткое содержимое статьи:

Типы рубильников

Существует два основных вида перекидных рубильников:

Однополюсные. Самый распространённый вид. Как видно на фото однополюсного перекидного рубильника, его конструкция оснащёна одним модулем. Для этой вариации используют медные проводники. Это оптимальный выбор для генераторов с частотой, не превышающей 20Гц.

Немаловажный нюанс – максимально возможная нагрузка – 200А. Вследствие этого, в жилых зданиях их редко используют. Ещё одной отличительной чертой однополюсных рубильников является низкое значение выходного напряжения.

Двухполюсные. Наиболее популярный тип на сегодняшний день. Область его применения – жилые здания. Рубильник на два ввода позволяет обслуживать приборы, подключённые не только к однофазной, но и к трехфазной электросети. Подобные аппараты имеют отрицательное сопротивление равное 60Ом. Причём выходное напряжение может быть самым разным. Оно зависит от применяемой версии аппарата.

На сегодняшний день чаще всего в магазинах можно увидеть рубильники РР20, оснащённые открытыми конденсаторами. При подключении таких аппаратов необходимо применение блоков питания на 300В.

Особенности подключения

На выбор схемы подключения перекидного рубильника оказывает влияние тип электрической сети.

Сеть однофазного типа

Подключить подобный аппарат к данной сети можно только, если он имеет два полюса. Кроме этого, нужно учесть, что работа рубильника возможна только, если присутствует блок питания с подходящими теххарактеристиками. Что касается перемычек, обеспечивающих контакт двухполюсных аппаратов, то желательно отдать предпочтение медным.

Перед установкой таких рубильников в жилом здании нужно обязательно проверить наличие электрических щитов КК202 или их аналогов.

Двухфазная сеть

Как подключить своими руками рубильник, если сеть двухфазная? Схема предусматривает применение блока питания на 200В. Также для данных приспособлений нужно использовать исключительно расширительные переключатели. Только тогда устройства допустимо использовать в трехфазной электросети, независимо от числа используемых модулей.

Максимальным напряжением для таких аппаратов будет 300В, а максимальным отрицательным сопротивлением – 40Ом. Контакты в таких устройствах применимы исключительно для закрытых моделей, а колебания электрической энергии контролируются при помощи конденсаторов проходного типа.

Читайте также:
Отделка углов пластиковыми панелями своими руками

Трёхфазная сеть

Для такого вида электросети используют реверсивные рубильники. Они обеспечивают полноценную бесперебойную подачу электрического тока, распределяя нагрузку на несколько линий и полностью сохраняя электроснабжение. Здесь нужно использовать блоки питания на 400 В. Также будет уместно применять импульсные трансформаторы.

Рубильник перекидного типа для генератора

Рубильник для генератора обязан быть одномодульной модификации, а блокираторная конструкция должна иметь классическую схему контактов. Говоря о реверсивном блоке, он изготавливается в версии с контроллером. Вследствие этого, на аппаратах, оборудованных резонатором, не нужно устанавливать выбор.

В таких ситуациях значение пороговой частоты будет довольно высоким. Применяемые рубильники могут быть разного размера – это зависит во многом от количества применяемых конденсаторов проходного типа.

Перед тем, как начать устанавливать рубильник, нужно внимательно изучить, как устроена система заземления. В ней обязательно должен присутствовать особый заземляющий электрод с маркировкой, содержащей всю необходимую информацию о защите.

Чаще всего в продаже можно найти изделия с маркировкой «ИП30». Такие сведения говорят о том, что расходник обладает довольно надёжной изоляцией.

Советы по установке

Следуйте следующим советам, если хотите, чтобы пользоваться перекидным рубильником в корпусе было безопасно:

  • Монтировать аппарат можно лишь в закрытом помещении.
  • Устройство должно быть влагостойким и устойчивым к воздействию природных осадков.
  • Эксплуатировать прибор можно при температуре в пределах от -40 до +55°С.
  • Если верх контактного ножа обгорел, надо произвести его зачистку напильником.
  • Крепление рубильника должно быть надёжным и прочным.

Подключение домашнего генератора с помощью перекидного рубильника АВВ

Одни из самых распространенных и используемых средств коммутации — перекидные рубильники. Они участвуют в создании многих электрических систем. По своей сути и конструкции — это выключатель, отличающийся от простого рубильника дополнительными контактами, которые позволяют переключать с одного оборудования на другое, а не только включать/выключать.

Перекидной рубильник

Это бывает особенно важно, когда приходится коммутировать цепи под высоким напряжением, например линии электропередач. В этом случае нельзя допустить ошибку и использовать обычные выключатели, которые оператор может перепутать. A рубильник, в любом случае, подключит только одну из линий, и не допустит аварии.

Когда нужно не только переключить линии, но и отключить совсем, то можно применить трехпозиционное устройство с промежуточным положением. Если говорить о домашнем использовании, то можно взять рубильник перекидного типа для работы в таких трех фиксациях:

  • домашняя электрическая сеть;
  • отключение;
  • питание нагрузки от генератора.

Трехпозиционный перекидной рубильник

Чтобы понять принцип работы, достаточно представить конструкцию перекидного переключателя (фото). Вертикальное положение ручки — это средний контакт — выключение. Боковое положение I или II задействует только левую или только правую группу контактов. Каждая из групп подключена соответственно к генератору и питающей сети дома.

В чем заключаются достоинства перекидных рубильников, их недостатки

Электрический рубильник — прибор достаточно простой, но и в нем кроются свои плюсы и минусы. Преимуществ довольно много:

  • простая открытая конструкция или полузакрытая, то есть, визуальность, которая позволяет c легкостью найти и исправить поломку;
  • несложное обслуживание, ремонт;
  • возможность работы с коммутационным током в 500, 630, 1000 ампер;
  • разнообразие моделей и широкое применение;
  • доступность прибора с высокой коммутируемой мощностью по стоимости, что является веским преимуществом.

Открытый перекидной рубильник

Главные недостатки заключаются:

  • в наличии среди всего разнообразия большого числа открытых конструкций. Поэтому, при не аккуратном пользовании можно попасть под напряжение;
  • в зависимости скорости переключения от ответной реакции оператора. При переключении медленном может образоваться высокотемпературная дуга, и внутренние узлы рубильника могут сгореть;
  • в возникновении скачков тока, если переключение происходит до выключения нагрузки;
  • в существующей возможности КЗ во время возникновения дуги.

Такие переключатели лучше размещать в кожухе или закрытом надежном шкафу.

Современный перекидной рубильник — подключение к генератору

Нестабильность снабжения дачных и загородных частных домов электроэнергией вынуждает владельцев обзавестись дополнительным источником тока — генератором. Возникает необходимость поменять схему подачи электричества в доме. Особенно сложного в этом ничего нет. Нужно всего лишь подобрать перекидной рубильник, установить в щиток и грамотно подключить к сети. Давайте рассмотрим важные моменты при его установке, и какова схема подключения.

Что нужно сделать при установке — мои советы

Для бытового подсоединения генератора удобно использовать реверсивный перекидной рубильник ABB. Он компактный и безопасный, его устанавливают в обычный щит на DIN-рейку. Этот прибор можно подключать в однофазную, а также трехфазную сеть, поскольку есть возможность укомплектовать его дополнительными контактами.

Читайте также:
Последовательность сборки гидроаккумулятора VAREM UO24

Для однофазной сети пригоден 2-х полюсный прибор, трехфазной — 4-х полюсный, который переключает с входного питания на генератор сразу три фазы и ноль. Трехполюсный рубильник ABB может быть полезен как для однофазной сети, а также для трехфазной без нулевого провода.

Если вы планируете размещать распределительный щит в помещении, то можно применить пластиковые боксы или металлические.

На улице следует устанавливать металлический щиток с высокой степенью защиты. Внутри крепится DIN-рейка, рассчитанная на все необходимые модули схемы. Я рекомендую для безопасности использования перекидного рубильника принять во внимание следующие моменты:

  • расположить щиток лучше в закрытом помещении;
  • температура эксплуатации должна быть в диапазоне -40 +55оС;
  • необходимо защищать приборы от влаги;
  • модуль рубильника нужно прочно и надежно установить и закрепить;
  • при установке вне дома обеспечивать защиту от погодных воздействий;
  • все действия с рубильником — монтажные работы, ремонт, обслуживание следует проводить при полном отключении сети.

Схемы подключения

Реверсивный рубильник ABB для домашнего использования состоит из двух одинаковых выключателей нагрузки. Они соединены между собой и сверху установлен рубильник переключатель с тремя положениями. В положении I происходит коммутация с основной питающей сетью, все цепи разомкнуты — в среднем положении, положение II — подключен заместительный источник питания — генератор. Закрытая конструкция реверсивного переключателя ABB делает коммутацию безопасной и ее может произвести даже неподготовленный пользователь.

Итак, чтобы подключить генератор, надо подвести кабель основной сети к одной входной группе рубильника, а ко второй — кабель от генератора. В модульном переключателе АВВ предусмотрено два входа и выхода. Чтобы подключить выходы к нагрузке, их соединяют между собой перемычками параллельно.

Для трехфазного подключения к корпусу переключателя надо подсоединить справа и слева еще по одному контакту. Важно помнить, что в реверсивном рубильнике не предусмотрены расцепители, ни тепловой, ни электромагнитный, а работает только принцип выключателя нагрузки. Поэтому на вводе от сети питания и генератора устанавливаются защитные автоматы. Их предельный ток определяется допустимой нагрузкой на питающую линию.

Подключение через трёхпозиционный рубильник. 1 — вводной автомат сети, 2 — счётчик, 3 — УЗО, 4 — генератор, 5 — трёхпозиционный переключатель, 6 — нулевая шина N, 7 — шина заземления PE, 8 — к потребителям

Автомат на электросеть обычно стоит в щите учета электроэнергии. Ввод от генератора тоже должен быть обязательно защищен автоматом, который монтируется в щитке переходного рубильника, и находится рядом с ним. Во время проведения монтажа соблюдайте полярность, иначе может произойти, что поменяются местами на выходе ноль и фаза. Автоматические выключатели необходимы в данной схеме: перекидной рубильник не защищает сеть от перегрузок и короткого замыкания.

Реверсивный рубильник — превосходное решение для безопасного и безошибочного переключения нагрузки с одной питающей линии на другую. Это современный прибор, отличающийся надежной изоляцией контактов, наличием дугогасительного устройства во многих модификациях, индикации настоящего положения рубильника.

Реверсивные рубильники от финской компании ABB, рассчитанные на номинальный ток от 25 до 100А, напряжение 230/400В, представлены в нашем интернет-магазине строительных материалов “Кузьмич24” в большом ассортименте. В любой ситуации — в спокойной работе или при аварии на основной линии — такое устройство обеспечит для вас бесперебойную подачу электроэнергии в дом.

РЕВЕРСИВНЫЙ РУБИЛЬНИК (ПЕРЕКЛЮЧАТЕЛЬ)

Реверсивный рубильник или переключатель в бытовых электросетях, как правило служит для подключения резервного питания. Это могут быть бензиновые и дизельные генераторы, а также, например, подключение второго источника электричества от другой ЛЭП для надежности электроснабжения частного дома. Переключение производится механически в ручном режиме, не путайте с АВР (автоматическое включение резерва).

Т.к. электрощиты я в основном собираю на комплектующих АВВ, то и реверсивный перекидной рубильник я тоже использую их производства. Но бывает, что ставлю и другие переключатели, например, “ручной ввод резерва” от Legrand и переключатели-рубильники SFT от Hager, но об этом напишу в отдельных статьях.

При сборке электрощитов я использую реверсивные выключатели нагрузки ABB на 40А или 63А в зависимости от мощности, которую выделили для подключения частного дома. Бывают и меньшего номинала на 16 и 25 А, но они очень маленькие и ими неудобно делать переключения. Честно говоря даже не знаю, где их используют.

Часто при заказе электрощитов, вы спрашиваете, зачем нужно ставить именно реверсивный рубильник, почему нельзя поставить просто автомат для генератора. Ответ очень прост:

  1. Не выдать в общую сеть напряжение, т.е. чтобы ваш генератор не стал источником электричества для всей общей ЛЭП. Соседи, конечно, обрадуются электричеству, получаемого от вас, но в это время могут устранять аварию на линии, и электромонтеры попадут под напряжение.
  2. Перекидной выключатель нагрузки исключает возможность встречного включения двух источников питания, основной электросети от ЛЭП и резервного от генератора. Реверсивный переключатель исключает возможность выдачи напряжения в общую сеть, или
Читайте также:
Подключение газа к частному дому: Обзор вариантов газификации +Видео обзор

Конечно, теоретически можно выключать самостоятельно руками вводной автомат или рубильник, включать у себя генератор и пользоваться электричеством от генератора. Но кто даст 100% гарантию, что однажды вы не забудете отключить ввод? Никто, а как я писал выше, реверсивный рубильник исключает это. Простыми словами – это “защита от дурака”.

Реверсивный рубильник имеет три положения:

  • I ON – включен левый полюс рубильника, при этом правый отключен.
  • О OFF – отключено всё (оба ввода).
  • II ON – включен правый полюс рубильника, при этом левый отключен.

Схема подключения резервного генератора к перекидному рубильнику имеет несколько вариантов в зависимости на сколько фаз рассчитан генератор. Также имеет значение сколько фаз в электрощите дома вы хотите подключить на резервный ввод.

Реверсивный рубильник с трехфазным генератором

Часто в быту используют однофазные генераторы, т.к. они дешевле. Однофазный генератор тоже можно подключить в электрощите при трехфазном вводе. При этом одну фазу от генератора можно “раздать” на три фазы в доме и всё будет работать.

Реверсивный рубильник с однофазным генератором

Есть только один нюанс – это трехфазные электропотребители в доме, но они очень редко встречаются. А если брать стандартные электроплиты (варочные панели), электрокотлы, водонагреватели, то по сути они представляют собой однофазные нагрузки.

Такая схема подключения однофазного генератора позволяет не думать о том, где и какое освещение можно включать, какие розетки работают. Свет сейчас везде практически на энергосберегающих лампах, в розетки включаются телевизоры, зарядки для телефонов, планшетов, которые тоже потребляют очень мало электроэнергии. Можно включить по очереди чайник, микроволновку для подогрева воды и пищи.

При этом, конечно, нужно понимать, что при включенном генераторе не нужно включать электроплиту, духовку, гладить, стирать, т.е. включать мощные приборы.

При использовании реверсивный рубильников ABB необходимо учитывать ряд их особенностей.

Реверсивный рубильник на 40А “низкий” и им очень неудобно переключать, также это портит вид электрощита.

Для поднятия рубильника АВВ я использую специальные адаптеры от Шнейдер Электрик, которые помогают приподнять рубильник на дин-рейке в щите. Но иногда реверсивный рубильник может упирать в крышку электрического щита и не давать ей закрываться, поэтому тоже надо знать, где их можно использовать, а где нельзя.

У реверсивного рубильника ABB на 40А я всегда меняю родную заводскую ручку для управления на другого, более удобного исполнения.

Родная ручка очень неудобная, и порой не то что трудно, а порой просто невозможно сделать переключения. Поэтому лучше ставить ручку управления, как на фото ниже.

Ручка бывает черным цветом (код 1SCA108319R1001) и красным цветом (код 1SCA108688R1001).

Следует отметить, что реверсивный переключатель на 63А вобще продается без ручки, ее нужно заказывать отдельно.

Реверсивный рубильник (переключатель) продается 6-типолюсным. Поэтому при однофазном питании одна пара контактов остается свободная, а при трехфазном – нужно ставить дополнительные модули, чтобы отключать три фазы и нейтраль.

Дополнительные полюсы для переключателя на 40А одни, а для 63А другие. Бывают левые и правые, но можно покупать только одного исполнения, подходят и направо и налево. Я покупаю в электрические щиты дополнительный полюс на 40А – 1SCA105001R1001, а на 63А – 1SCA105461R1001.

Как уже показал на схемах выше, я для надежности обязательно переключаю и фазы и нейтраль. Помимо здравого смысла, переключение нейтрали предписывается и нормативно-технической документацией.

Периодически использую реверсивный рубильник и для организации байпаса для стабилизаторов, подключенных в схему электрощита. В одном положении идет питание электросети частного дома через стабилизаторы, во втором положении – без стабилизаторов.

Т.к. в электрощитке есть и рубильник для подключения генератора, то для удобства установил ручки разным цветом. Красная для байпаса стабилизатора, а черная для генератора.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: