Повреждения электрического кабеля, как определить место

Онлайн помощник домашнего мастера

Как найти место повреждения кабеля: методы определения места, поиск причины поломки и лучшие способы устранения

Соединение источника электричества с потребителями электроэнергии в большинстве случаев осуществляется путем прокладывания кабельных линий в земле. Это предусматривает расположение трассы кабеля по кратчайшему расстоянию, нет необходимости сооружать громоздкие металлоконструкции, доступ посторонних к линии невозможен (за исключением случаев несанкционированного доступа).

Однако, одним из основных недостатков такого вида соединений является сложность установления места неисправности.

Краткое содержимое статьи:

Причины повреждения

Основные причины заключаются в следующем:

  • ошибки проектирования (занижение сечения, неправильный подбор защитной аппаратуры);
  • дефекты, допущенные на производстве: сквозные отверстия, трещины и заусенцы на проволоке;
  • крутые изгибы и механические поломки, допущенные в процессе прокладки кабеля;
  • порча, допущенная при эксплуатации: старение изоляции, коррозия металлов, разрывы при производстве земляных работ

В зависимости от вида проложенного кабеля, способа его прокладки и уровня напряжения, выбирается метод, с использованием которого будет устанавливаться участок повреждения. Основными, наиболее эффективными способами установления места неисправности являются рассмотренные ниже методы.

Методы поиска места повреждения кабеля

Разработаны и успешно применяются следующие способы для поиска мест повреждения.

Импульсный способ

Импульсный способ исключен к применению при заплывающих пробоях ввиду того, что причиной таких повреждений служит высокая влажность, соответственно сопротивление проводника превышает 150 Ом, а это недопустимо для данного метода.

Проверка осуществляется в соответствии с предусмотренной инструкцией как найти место повреждения, с использованием измерителя ИКЛ-5 или ИКЛ-4 путем ввода через переменный ток импульса к области неисправности и получении ответного сигнала. Прибор производит замер времени между периодом подачи и возвращением импульса.

Акустический метод

Акустический метод предусматривает использование приемника и электрогенератора мощных ударных импульсов. Конденсатор генератора присоединяют к кабелю, и когда разрядник срабатывает, напряжение в линии создаёт электромагнитную волну, происходит сильнейшее пробивание, сопровождающееся щелчком в области неисправности. Оператор улавливает щелчки при помощи акустического прибора.

Зона распространения звука распложена в границах от двух до пятнадцати метров. Точка неисправности кабеля устанавливается присутствием максимально громкого звука.

Метод петли

Неисправности устанавливается путем сравнения сопротивлений нарушенной и целой кабельной жилы при использовании метода петли. Порядок поиска повреждений в этом случае требует формирование из кабеля моста типа Р 334 или Р 333, так же требуется наличие моста сопротивления МВУ-49.

Применяется в том случае, если одна жила кабеля не повреждена, если все жилы неисправны, рекомендуется использование неповреждённой жилы находящегося рядом кабельного канала.

Исправная и поврежденная жилы соединяются на одной стороне кабеля петлей. На противоположной стороне кабеля устанавливают мост, регулирующий электросопротивление. Производятся замеры, и, используя формулы соотношения сопротивления, устанавливается дистанция до точки расположения неисправности.

Минусом такого способа является неточность установления точки нахождения неисправности и огромные временные затраты.

Индукционный метод

Рассмотрим теперь, как определяют участок повреждения кабеля индукционным методом, который является более точным и дает шанс установить отрезок неисправности прямо в КЛ, погрешность этого способа не превышает 50 сантиметров.

Применение индукционного метода допустимо в случае, если в месте неисправности сопротивление переходное в кабельной линии составляет не более от двадцати до пятидесяти ОМ.

Содержание способа состоит в улавливании и фиксации над трассой кабельного канала колебаний электромагнитного поля, образованного за счет пропускании по неисправной жиле электричества с частотой звука от 800 до 1000 Гц. Оператор двигается по ходу трассы кабеля и с использованием антенны, усилителя и наушников определяет характер передачи электромагнитного поля. Звучание заметно увеличивается в точке неисправности и теряет силу на расстоянии 50 сантиметров от точки пробоя.

Метод накладной рамки

Если кабель проложен открытым способом или в открытых шурфах, в случае однофазного замыкания кабельной жилы на оболочку, с целью установления отрезка неисправности, специалисты советуют применение метода накладной рамки.

Рамка представляет собой катушку из 1000 витков проволоки и имеет форму прямоугольника, в этом методе используется в роли антенны, выглядит, как указано на фото с места повреждения кабеля.

При определении места неисправности оператор использует телефон для прослушивания изменений звуков, которые издают жила и оболочка кабеля при подключении к ним генератора звуковой частоты. Прослушивается пара максимума и пара минимума звучания, в случае, если рамка установлена и вращается вокруг оси кабеля перед местом расположения повреждения кабельной линии.

Подобный звук говорит о том, что в кабеле протекает пара токов, по жиле и по оболочке. Монотонное звучание вызвано током протекающем только по оболочке и слышится, в случае если рамка установлена и вращается за местом неисправности кабеля.

Такой способ эффективен, если длина кабеля не превышает одного километра за местом повреждения.

Во всех случаях отыскания места повреждения кабельной линии необходимо произвести огромный комплекс работ с использованием приборов для поиска повреждения кабеля.

Методы определения места повреждения кабеля

1. Виды повреждений кабельных линий

Повреждения в трехфазных кабельных линиях (КЛ) могут быть следующих видов:

  1. замыкание одной жилы на землю;
  2. замыкание двух или трех жил на землю либо двух или трех жил между собой;
  3. обрыв одной, двух или трех жил без заземления или с заземлением как оборванных, так и необорванных жил;
  4. заплывающий пробой, проявляющийся в виде КЗ (пробоя) при высоком напряжении и исчезающий («заплывающий») при номинальном напряжении.
Читайте также:
Потолок из вагонки в современном стиле: как обшить своими руками?

Характер повреждения определяют с помощью мегомметра. Для этого с обоих концов линии проверяют:

  • сопротивление изоляции каждой жилы кабеля по отношению к земле (фазная изоляция), сопротивление изоляции жил относительно друг друга (линейная изоляция);
  • целостность токоведущих жил.

2. Методы определения зон повреждения кабельных линий

Выбор метода определения места повреждения кабеля зависит от характера повреждения, места прокладки и переходного сопротивления в месте повреждения. При повреждении КЛ ориентировочно определяют зону (место локализации) повреждения, и после этого различными методами уточняют место повреждения на трассе. Для более точного определения зоны повреждения поиск желательно выполнять с одного конца КЛ несколькими методами. Если такая возможность отсутствует, более точный результат дает поиск одним методом с обоих концов кабеля.

Для поиска зоны повреждения используют:

  • метод прожигания изоляции (разрушающий метод),
  • импульсный метод;
  • метод колебательного разряда;
  • метод петли;
  • емкостный метод.

Метод прожигания изоляции. В этом случае устанавливают место, где сопротивление между жилами или между жилой и оболочкой будет минимальным. Для уточнения места повреждения необходимо снизить переходное сопротивление до минимального предела. Для этого при помощи генератора высокой частоты или трансформатора выполняют прожигание изоляции. Процесс прожигания протекает по-разному, в зависимости от характера повреждения и состояния кабеля. Обычно через 15 – 20 с сопротивление уменьшается до нескольких десятков Ом. При увлажненной изоляции процесс проходит более длительно, и сопротивление удается уменьшить только до 2000 – 3000 Ом. В муфтах процесс прожигания кабеля проходит более длительно, иногда несколько часов, причем сопротивление резко меняется: то снижается, то снова возрастает, – пока не установится процесс, и сопротивление не начнет снижаться устойчиво. Это разрушающий метод определения места повреждения кабеля.

Импульсный метод применяется для определения зоны повреждения кабеля при переходном сопротивлении до 150 Ом в любых случаях, кроме заплывающего пробоя. Метод основан на измерении интервала времени между моментами подачи зондирующего импульса переменного тока и приема отраженного импульса от места повреждения. Скорость распространения импульсов в КЛ высокого и низкого напряжения – величина постоянная и равна V=160 м/мкс.

Поэтому по времени пробега импульса до места повреждения и обратно (Tx) определяют расстояние до точки повреждения кабеля (Lx, м):

Измерения производятся рефлектометрами (например, РЕЙС-105Р). На экране прибора имеется линия масштабных отметок и линия импульсов. По форме отраженного импульса можно судить о характере повреждения. Отрицательное значение отраженный импульс имеет при КЗ, положительное – при обрыве жил.

Метод колебательного разряда применяется при заплывающих пробоях кабелей. Для измерения на поврежденную жилу от испытательной установки подается напряжение, которое плавно поднимается до напряжения пробоя. В момент пробоя в кабеле возникает разряд колебательного характера. Период колебаний определяет расстояние до точки повреждения, так как электромагнитная волна распространяется в кабеле с постоянной скоростью. Измерения выполняются рефлектометрами.

Метод петли основан на измерении сопротивлений при помощи моста постоянного тока. Применение метода возможно при повреждении одной или двух жил кабеля и при наличии одной неповрежденной жилы. При повреждении трех жил можно использовать жилу рядом проложенного кабеля. Для этого поврежденную жилу накоротко присоединяют к целой жиле кабеля, образуя петлю. К противоположным концам жил присоединяют регулируемые сопротивления моста.

Равновесие моста будет при условии, о.е.:

Сопротивление жилы кабеля прямо пропорционально его длине, поэтому расстояние до точки повреждения, м:

где R1 и R2 – регулируемые сопротивления моста, Ом;

L – полная длина линии, м.

К недостаткам этого метода следует отнести большие затраты времени, меньшую точность, необходимость устанавливать «закоротки». Поэтому метод «петли» сейчас вытесняется другими методами: емкостным, импульсным методами, методом колебательного разряда и другими.

Методы непрерывно совершенствуются.

Емкостный метод применяется для определения расстояния от конца линии до места обрыва одной или нескольких жил КЛ путем измерения емкости кабеля. Метод основан на измерении емкости оборванной жилы с помощью моста переменного или постоянного тока, так как емкость кабеля зависит от его длины. При обрыве жилы кабеля без заземления измеряется емкость оборванной жилы с обоих концов. Считаем, что длина кабеля делится пропорционально измеренным емкостям С1 и С2, тогда:

После определения зоны повреждения в этот район для определения места повреждения направляется оператор, который использует акустический, индукционный метод или метод накладной рамки.

Акустический метод. Сущность акустического метода состоит в создании в месте повреждения искрового разряда и прослушивании на трассе звуковых колебаний, вызванных этим разрядом над местом повреждения. Этот метод применяют для обнаружения на трассе всех видов повреждения с условием, что в месте повреждения может быть создан электрический разряд и это место ориентировочно известно. Для возникновения устойчивого разряда необходимо, чтобы величина переходного сопротивления в месте повреждения превышала 40 Ом.

Читайте также:
Отделка потолка вагонкой: дизайн, крепление и монтаж на примерах фото и видео

Слышимость звука на поверхности земли зависит от глубины залегания кабеля, плотности грунта, вида повреждения и мощности разрядного импульса. Возможная глубина прослушивания колеблется от 1 до 5 м. Применять этот метод для открыто проложенных кабелей, кабелей, проложенных в каналах и в туннелях, не рекомендуется, так как из-за хорошего распространения звука по металлической оболочке кабеля можно допустить большую ошибку в определении места повреждения.

В качестве генератора импульсов применяется кенотрон с дополнительным включением в схему высоковольтных конденсаторов и шарового разрядника. Вместо конденсаторов можно использовать емкость неповрежденных жил кабеля. В качестве акустического датчика используют датчики пьезомагнитной или электромагнитной системы, преобразующие механические колебания грунта в электрические сигналы, поступающие на вход усилителя звуковой частоты. Над местом повреждения сигнал наибольший.

Индукционный метод применяют для непосредственного отыскания мест повреждения кабеля на трассе:

  • при замыкании изоляции жил между собой или на землю;
  • при обрыве с одновременным пробоем изоляции между жилами или на земле;
  • для определения трассы и глубины залегания кабеля;
  • для определения местоположения соединительных муфт.

По этому методу на поверхности земли с помощью приемной рамки фиксируют изменения электромагнитного поля над кабелем при пропускании по нему тока от долей ампера до 20 А (звуковой частоты 800÷1200 Гц). Диапазон определяется в зависимости от наличия помех и глубины залегания кабеля. ЭДС, наводимая в рамке, зависит от распределения тока в кабеле и взаимного пространственного расположения рамки и кабеля. Зная характер изменения поля, можно по ориентации рамки определить трассу прохождения и место повреждения кабеля. Более точные результаты получают при прохождении тока по цепи «жила – жила», для этого выжиганием однофазные замыкания переводят в двух- и трехфазные или создают искусственную цепь «жила – оболочка кабеля», снимая заземление с цепи с двух сторон и подключая генератор к жиле и оболочке кабеля.

Силовые линии поля от тока цепи «жила – земля» представляют собой концентрические окружности, центром которых является ось кабеля. Ток, идущий по прямому и обратному проводам, создает два концентрических магнитных поля, действующих в противоположных направлениях (поле от пары токов). При расположении жил в горизонтальной плоскости результирующее поле на поверхности земли наибольшее, а при расположении жил в вертикальной плоскости – наименьшее. Поскольку кабели имеют скрутку жил, то в рамке, расположенной вертикально и перемещаемой вдоль трассы кабеля, будут индуцироваться ЭДС, изменяющиеся от минимума при вертикальном расположении жил до максимума при горизонтальном расположении жил. При отыскании повреждения следует помнить, что сигнал за местом повреждения затухает на расстоянии не более половины шага.

Этим методом определяют трассу кабеля, глубину его прокладки, место расположения соединительных муфт (по усилению звучания в телефоне из-за увеличенного расстояния между жилами). Для определения глубины прокладки кабеля сначала находят линию его трассы и проводят черту. Затем, располагая ось рамки под углом 45º к вертикальной плоскости, проходящей через ось кабеля, устанавливают место исчезновения в рамке индуцированной ЭДС. Расстояние от этого места до трассы, отмеченной чертой, равно глубине залегания кабеля. При наличии защитной металлической трубы уровень звука резко уменьшается, так как труба является экраном.

Метод накладной рамки применяют для непосредственного обнаружения места повреждения кабеля. Метод основан на том же принципе, что и индукционный, удобен при открытой прокладке кабеля. При прокладке кабеля в земле необходимо открыть несколько шурфов в зоне повреждения, после этого к жиле и оболочке или между двумя жилами подключают генератор. На кабель накладывают рамку и поворачивают ее вокруг оси. До места повреждения будут прослушиваться два максимума и два минимума сигнала от поля пары токов. За местом повреждения при вращении рамки будет прослушиваться монотонный сигнал, вызванный магнитным полем одиночного тока.

За последние 15 – 20 лет обслуживания подземных телекоммуникационных трассы усложнилось, т.к. эксплуатируемых трасс стало больше, а средний «возраст» их увеличился, активизировались строительные работы. В городских условиях существуют проблемы вскрытия асфальтного покрытия и высокий уровень электромагнитных помех широкого спектра.

3. Современные способы поиска трасс прохождения кабельных линий и их повреждений

В настоящее время появились новые способы поиска трасс. Раньше поисковые приборы были простыми, дешевыми и состояли из поисковой антенны с датчиком и миниатюрного встроенного приемника со звуковой индикацией. Степень фильтрации была невысока, часто приемник представлял собой усилитель низкой частоты, выдающий звук в «чистом виде», без обработки.

Новое поколение приборов для поиска трасс более эффективно, они точнее, но и значительно дороже. Для уменьшения электромагнитных помех усложнили фильтрующий блок, а городские акустические шумы потребовали акустической отстройки. Все это привело к увеличению габаритов и веса прибора, и для обеспечения комфортной работы персонала в современных приборах приемник и поисковую антенну разделили.

Читайте также:
П-образная кухня — новинки современного дизайна и особенности использования пространства (75 фото)

Дальнейшее развитие шло по пути расширения сервисных возможностей приборов, например, цифровая индикация глубины закладки кабеля и величины тока. Для этого ввели второй горизонтальный датчик и предусмотрели возможность строго-вертикального направления антенны. Для поиска трассы по минимуму сигнала был встроен еще и вертикальный датчик. Совместная работа вертикального и горизонтального датчиков позволяет искать трассу не только по максимуму или минимуму, как это было в традиционных методах, но и по инвертируемому сигналу. Такой способ называют по-разному: «супермаксимум», «максимум+» и т.д. Его достоинство заключается в том, что он объединяет точность поиска «по минимуму» с удобством поиска по максимуму (рис. 1).

Рисунок 1 – Режим «супермаксимум» (в центре) объединяет удобство определения трассы по максимальному сигналу (слева) с точностью поиска по минимуму сигнала (справа)

Появление датчиков с различной ориентацией приема сигнала позволило включить в комплекс измерений фазовый анализ, который дает дополнительные данные:

  • за счет использования вертикального датчика стало возможно определять место измерения: справа или слева от кабеля;
  • нахождение «своего» кабеля в местах схождения коммуникаций. Эта проблема по мере уплотнения коммуникаций приобрела особую актуальность. Было замечено, что направление тока в соседних трассах противоположно в каждый момент времени, что означает сдвиг фаз на 180°. Это используют как признак, разделяющий кабели;
  • определение топологии поля для определения места прокладки кабеля при помощи устройства, которое с помощью датчиков с различной ориентацией оценивает расстояние до кабеля, глубину залегания и показывает их на плане, сопровождая цифровыми показаниями уровня сигнала (рис. 2).

Рисунок 2 – Устройство для изучения топологии магнитного поля а – слева от измерителя показан «свой» кабель, сигнал от генератора направлен вперед по кабелю; б – справа от измерителя «чужой» кабель – сигнал возвращается к генератору

Этот метод (контактный метод) основан на том, что при протекании тока через поврежденную оболочку на земле возникает разность потенциалов. Эту разность потенциалов снимают штырями, которые подключают к приемнику вместо антенны. Контактный метод на несколько порядков чувствительнее методов, основанных на определении амплитуды. Возможен пассивный поиск подземных коммуникаций, без подключения генератора.

Вместе с тем контактный метод имеет два недостатка:

  • трудоемкость. Метод достаточно точный, если место дефекта известно хотя бы приблизительно. В противном случае требуется обследовать весь кабель. Для высокоомных дефектов зона чувствительности резко снижается: уже для повреждений с сопротивлением около 100 кОм зона обнаружения находится в радиусе более 1 м от повреждения. Найти такое повреждение сложно;
  • для городов с развитым асфальтным покрытием применение контактного метода невозможно. В сельской местности трудности связаны с особенностями ландшафта, почвы и погодных условий.

Для городских условий был разработан двухчастотный амплитудный метод, который может полностью заменить традиционный амплитудный метод, при котором повреждение ищут по резкому спаду сигнала. Недостатком традиционного поиска является то, что он должен быть непрерывным, а изменение сигнала может происходить по разным причинам. Двухчастотный амплитудный метод работает сразу на двух частотах: 273 Гц и 2 кГц. Низкочастотный сигнал 273 Гц чувствителен к повреждению изоляции, а сигнал с частотой 2 кГц является опорным и изменяется с глубиной залегания кабеля или положением относительно него измерителя точно так же, как и низкочастотный сигнал.

При отсутствии повреждения соотношение сигналов вдоль кабеля практически не изменяется. Если кабель поврежден, то изменение сигнала частотой 273 Гц значительно, а изменение сигнала 2 кГц практически не наблюдается.

Прибор анализирует соотношение уровня сигналов на двух частотах и определяет поврежденный участок, сравнивая соотношения сигналов на концах исследуемого участка. В городских условиях он работает на расстоянии до 100 м, что позволяет найти поврежденный участок кабеля на интервале1 км за 10 измерений. Затем на поврежденном участке можно провести следующие измерения, разбив его на более короткие отрезки. Это существенно облегчает работу специалистам-кабельщикам. Следует отметить, что чувствительность двухчастотного амплитудного метода на порядок выше традиционных способов поиска повреждений, а также позволяет проводить поиск на недоступных для измерения участках.

Облегчение и ускорение работы специалистов во все более усложняющихся условиях поиска трасс прокладки кабеля и поврежденных мест — общий итог применения всех перечисленных инновационных методов, разработанных в последние годы.

К сожалению, применение этих методов все еще сдерживается высокими ценами производителей на трассо-поисковые приборы.

Классы и марки бетона. Сводная таблица (В-М-С).

Класс бетона

Класс бетона (В) – показатель прочности бетона на сжатие и определяется значениями от 0,5 до 120, которые показывают выдерживаемое давление в мегапаскалях (МПа), с вероятностью 95%. Например, класс бетона В50 означает, что данный бетон в 95 случаев из 100 выдержит давление на сжатие до 50 МПа.

По прочности на сжатие бетоны подразделяют на классы:

  • Теплоизоляционные (В0,35 – B2).
  • Конструкционно-теплоизоляционные (В2,5 – В10).
  • Конструкционные бетоны (В12,5 – В40).
  • Бетоны для усиленных конструкций (от В45 и выше).
Читайте также:
Пеллетные котлы: цены и характеристики моделей

Класс бетона по прочности на осевое растяжение

Обозначается “Bt” и соответствует значению прочности бетона на осевое растяжение в МПа с обеспеченностью 0,95 и принимается в пределах от Bt 0,4 до Bt 6.

Марка бетона

Наряду с классом прочность бетона также задается маркой и обозначается латинской буквой “М”. Цифры означают предел прочности на сжатие в кгс/см 2 .

Разница между маркой и классом бетона не только в единицах измерения прочности (МПа и кгс/см 2 ), но и в гарантии подтверждения этой прочности. Класс бетона гарантирует 95%-ю обеспеченность прочности, в марках используется среднее значение прочности.

Класс бетона прочности по СНБ

Обозначается буквой “С”. Цифры характеризуют качество бетона: значение нормативного сопротивления / гарантированная прочность (на осевое сжатие, Н/мм 2 (МПа)).

Например, С20/25: 20 – значение нормативного сопротивления fck, Н/мм 2 , 25 – гарантированная прочность бетона fс, Gcube, Н/мм 2 .

Применение бетонов в зависимости от прочности

Средняя прочность бетона

Среднюю прочность бетона (R) каждого класса определяют при нормативном коэффициенте вариации. Для конструктивных бетонов v=13,5%, для теплоизоляционных бетонов v=18%.

R = В / [0,0980665*(1-1,64 *ν)]

где В – значение класса бетона, МПа;
0,0980665 – переходной коэффициент от МПа к кг/см 2 .

Таблица соответствия классов и марок

Класс бетона по прочности (С) по СНБ Класс бетона по прочности (B) по СНиП (МПа) Средняя прочность бетона данного класса R Ближайшая марка бетона по прочности М (кгс/см 2 ) Отклонение ближайшей марки бетона от средней прочности класса R – M/R*100%
МПа кгс/см 2
В 0,35 0,49 5,01 М5 +0,2
В 0,75 1,06 10,85 М10 +7,8
В 1 1,42 14,47 М15 -0,2
В 1,5 2,05 20,85 М25 -1,9
В 2 2,84 28,94 М25 +13,6
В 2,5 3,21 32,74 М35 -6,9
В 3,5 4,50 45,84 М50 -9,1
В 5 6,42 65,48 М75 -14,5
В 7,5 9,64 98,23 М100 -1,8
С8/10 В10 12,85 130,97 М150 -14,5
С10/12,5 В12,5 16,10 163,71 М150 +8,4
С12/15 В15 19,27 196,45 М200 -1,8
С15/20 В20 25,70 261,93 М250 +4,5
С18/22,5 В22,5 28,90 294,5 М300 +1,9
С20/25 В25 32,40 327,42 М350 -6,9
С25/30 В30 38,54 392,90 М400 -1,8
С30/35 В35 44,96 458,39 М450 +1,8
С32/40 В40 51,39 523,87 М550 -5,1
С35/45 В45 57,82 589,4 М600 +1,8
С40/50 В50 64,24 654,8 М700 +6,9
С45/55 В55 70,66 720,3 М700 -2,8

Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.

Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.

Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.

  • Строительство
  • Материалы
  • Мастера и эксперты
  • Физика

Сайт может содержать контент, запрещенный для просмотра лицам до 18 лет.

Что такое марка и класс бетона по прочности — таблица соответствия

Строительство потребляет огромный объем бетона, и он постоянно растет. Для каждого вида работ предназначается своя смесь, они отличаются составом, техническими характеристиками, ценой. Основными параметрами являются класс бетона и его марка – показывающие прочность состава после его полного отвердевания.

Классификация бетонных смесей нужна, чтобы определить их назначение в конкретном виде работ. При необходимости учитываются водостойкость, морозостойкость и другие свойства, определяющие долговечность конструкций из этого материала.

  1. Что означает марка бетона?
  2. Что такое класс?
  3. Соответствие марки и класса
  4. Характеристики и применение разных марок

Что означает марка бетона?

Марки бетона определяются по прочности на сжатие, они показывают, какую нагрузку выдерживает до разрушения образец на площади 1 см², обозначается буквой «М» с индексом. Например, М200 выдерживает нагрузку в 200 кг/см². Этот показатель зависит от соотношения основных компонентов, а также способа приготовления раствора, где учитываются:

  • Цемент должен быть как можно более высокой марки, при изготовлении полностью выдерживается соотношение компонентов;
  • Излишки воды в растворе приводят к избыточной пористости, ухудшая характеристики состава;
  • Заполнители – песок и щебень, должны быть равномерной фракции, без пыли, глины, органических и других включений;
  • Все составляющие должны тщательно перемешиваться для обеспечения однородности смеси;
  • Идеальная температура, при которой проходит затвердевание – около 20°С, чтобы обеспечить гидратацию цемента при отрицательных температурах в состав вводят добавки.

График зависимости расхода цемента М400 (1) и М500 (2) от прочности

Чтобы подобрать материал для строительства нужно знать, какие марки бетона бывают. Согласно СП 63.13330.2012, ГОСТ 7473-2010 этот показатель может изменяться от М100 до М500. Также существуют смеси, с узким диапазоном применения. Расшифровка маркировки бетонных растворов позволяет определить пропорции компонентов, которые в них входят. Для этого используются специальные таблицы. В зависимости от характеристик определяется стоимость материала. Чем выше марка, тем дороже будет раствор.

Читайте также:
Одеяло бонбон своими руками: видео, способы изготовления, готовые схемы

Что такое класс?

Класс бетона – гарантированная по прочности на сжатие нагрузка, которая им выдерживается, измеряется в МПа (мегапаскалях). Эта характеристика введена, чтобы уточнить свойства застывшего раствора, поскольку для одной марки они могут разниться. Этот параметр позволяет определить его фактическую прочность, так как рассчитывается для случаев, когда она будет подтверждаться не менее чем в 95%.

Класс бетона по прочности обозначается символом «В» с индексами от 5 до 60, которые показывают значение давления в мегапаскалях, выдерживаемого материалом до разрушения. Этот показатель соотносится с маркой, более привычной для строителей.

Соответствие марки и класса

При строительстве зданий или других объектов, нужно уметь разбираться в соотношении марок и классов применяемого бетона, что позволит исключить ошибки. Классы и марки заносятся в таблицы, которые можно найти в специализированной литературе.

Необходимо учитывать, что марочная прочность бетона допускает отклонения. Например, у М150 может быть устойчивость давлению в МПа В10 и В12,5, поэтому эта характеристика считается точнее. Иногда классы и марки современного бетона по его прочности определяются как допустимые параметры снижения качества раствора при сохранении технических и эксплуатационных характеристик. На это влияют пропорции и взаимосвязи компонентов раствора, рекомендуемых для изготовления согласно ГОСТ. Например, для смеси со средним показателем прочности М250 или В20 требуется соотношение цемента, песка и щебня по массе 1:4,6:7,0.

Характеристики и применение разных марок

Подбирая марку бетона и соответствующий ей класс бетона, необходимо понимать, где они будут применяться. Учитываются нагрузка на конструкцию, условия, где эксплуатируются здания и сооружения, другие сопутствующие факторы.

В проектной документации чаще указывается показатель В, как более точный параметр.

Кроме того, учитываются водонепроницаемость (W) и морозоустойчивость (F). Образец материала, водонепроницаемостью W2 и морозоустойчивостью F50 соответствует раствору М100-М150.

Основные области применения марок бетона, их характеристики:

  • М100 – тощие растворы, используется при устройстве дренажей, тонких стяжек, подготовке основания под фундамент;
  • М150 – легкий бетон, применяется для бордюров, пешеходных дорожек, стяжек;
    М200 – подходит для стяжки пола, строительства подпорных элементов, фундаментов под одноэтажные здания;
  • М250 – популярна в частном строительстве, обладает достаточной прочностью для возведения частных домов;
  • М300 – повышенная устойчивость, применяется для производства дорожных плит, лестничных маршей;
  • М350 – необходима при строительстве многоэтажных зданий и высотных сооружений, производства перекрытий с пустотами, устройства бассейнов, взлетно-посадочных полос, других объектов с повышенной нагрузкой;
  • М400 – сверхтяжелый раствор для промышленных зданий, возведения основ под сооружения на болотистых и влажных грунтах;
  • М450-М500 – применяются для строительства гидротехнических объектов, тоннелей, мостов и других спецсооружений.

Несмотря на то, что марка — менее точный показатель, чем класс, именно она считается главным показателем прочности.

Прочность бетона: от чего она зависит

Более 6000 лет бетон используется человеком для возведения монолитных конструкций и строительства дорог.

Основное качество бетона, которое широко используется в строительстве — его прочность. Бетон по прочности сравним с камнем, но он значительно удобнее в работе: ему можно придать любую форму. Именно сочетание прочности и удобства обработки сделало его настолько популярным.

Но, если прочность камня очевидна изначально, прочность бетона зависит от многих факторов.

Технологические факторы, которые влияют на прочность бетона

Бетон начинается с цемента — порошкового вещества водного твердения, которое смешивают с водой и заполнителями. Затем полученную смесь укладывают в опалубку, после чего начинается длительный процесс отвердевания. Каждый из этих этапов влияет на прочность материала.

Активность цемента

От активности цемента зависит, насколько прочным получится бетон.

Активностью цемента называют предел прочности на сжатие цементных образцов в возрасте 28 суток. Этот параметр лежит в основе классификации цементов на марки.

Активность цемента связана со следующими факторами:

  1. Тонкость помола и гранулометрия, которые влияют на плотность цементного камня. Высокое содержание тонких фракций обеспечивает быстрое нарастание прочности, а повышенное содержание частиц средних фракций способствует высокой прочности на 28-й день. Обычно портландцемент имеет тонкость помола, обеспечивающую удельную поверхность 300—350 м2/кг; при увеличении тонкости помола это показатель возрастает до 400—450 м2/кг, что приводит к более быстрому набору прочности. Крупно смолотый цемент не вовлекается в реакции гидратации полностью; даже через несколько лет в бетоне, изготовленном из цемента крупного помола, находят зерна непрореагировавшего цемента, что, безусловно, сказывается на прочности бетона отрицательно.
  2. Химический состав клинкера (например, если в составе клинкера есть негашеная известь, цемент дольше сохраняет активность).
  3. Примеси. Например, окись магния в глиноземистом цементе в количестве до 2% ускоряет набор прочности, а в более высоких концентрациях снижает активность цемента.
  4. Свежесть цемента. К примеру, через 3 месяца хранения в условиях высокой влажности воздуха прочность снижается на 62% для суточных образцов и на 23% для образцов в возрасте 28 дней. Это происходит из-за того, что под влиянием атмосферной влаги и углекислого газа на поверхности частиц цемента появляется слой новообразований, снижающих его активность. Быстротвердеющие виды цемента уже через месяц хранения становятся обычными.
Читайте также:
Отделка деревянного дома внутри: технологии, примеры, технические нюансы

Таким образом, основа прочного бетона — свежий качественный, правильно смолотый цемент.

Водоцементное соотношение

Одним из важнейших параметров бетонной смеси является соотношение в ней воды и цемента.

В зависимости от количества воды и полученной консистенции, смеси подразделяются на жесткие и подвижные. Подвижные смеси делятся на 5 типов:

  1. П1 — малоподвижные;
  2. П2—П3 — универсальные;
  3. П4 — подвижные смеси, не требующие уплотнения;
  4. П5 — литьевые.

Подвижность смеси измеряется конусом Абрамса; в зависимости от осадки бетонного конуса по сравнению с первоначальным размером назначается класс по подвижности.

Чем меньше в смеси воды, тем, теоретически, более высокую прочность можно ожидать от бетона.

Реакции гидратации полностью обеспечиваются при в/ц = 0,3. Но при таком количестве воды получается очень жесткая смесь, которая требует серьезной обработки. В противном случае она не уплотнится, в бетоне останутся полости и крупные поры, которые снизят его прочность.

Добавление воды в бетонную смесь увеличивает ее подвижность; бетонная смесь становится более пластичной, самоуплотняющейся и укладывается без пустот, но излишняя вода отрицательно влияет на прочность, что можно видеть в таблице.

Оптимальное решение этого противоречия — добавление пластификатора в бетонную смесь:

  1. Пластификатор увеличивает подвижность смеси на 1—2 пункта без добавления лишней воды и, соответственно, без снижения прочности.
  2. Добавление пластификатора повышает прочность бетона, поэтому, используя заданную марку цемента, для получения бетона расчетной прочности можно снизить количество цемента, как минимум, на 10% (до 20%), что, учитывая цены на цемент, обеспечит существенную экономию.
  3. Смеси с добавлением пластификаторов, благодаря своей подвижности, легко укладываются и уплотняются, в некоторых случаях не требуя обработки вибрацией (литые смеси).
  4. Пластификатор препятствует расслаиванию и увеличивает срок жизни бетонной смеси, что важно в том случае, если ее необходимо транспортировать к месту строительства.
  5. Если в конструкции используется арматура, добавление пластификатора улучшает адгезию бетона к арматуре.

Суперпластификаторы сочетают пластифицирующее воздействие с другими свойствами: водоредуцирующим, противоморозным и другими.

Заполнители

В состав бетонной смеси, помимо цемента и воды, входят заполнители:

  1. крупные (щебень, гравий);
  2. мелкие (песок).

Зерно крупного заполнителя может иметь различные размеры (от 20 мм и менее – до 100 мм). В зависимости от используемого заполнителя бетоны делятся на:

  1. тяжелые (на плотном крупном и мелком заполнителе);
  2. мелкозернистые (на плотном мелком заполнителе).

Их состав регулируется ГОСТ 26633-2015 «Бетоны тяжелые и мелкозернистые. Технические условия».

Методы замеса

Повышение прочности обеспечивают такие методы обработки цемента, как:

  1. мокрая активация цемента;
  2. виброактивация цемента.

Суть мокрой активации цемента в том, что в бетономешалку загружают все компоненты смеси, кроме песка, а воду заливают частично. Во время работы бетономешалки частицы крупного заполнителя растирают цемент в течение 5 минут, затем загружаются остальные компоненты. В результате этой процедуры цемент, особенно лежалый, активируется.

Виброактивация заключается в перемешивании и одновременной вибрации цемента с песком, в результате чего степень гидратации цемента повышается, а его активность увеличивается на 30–40%.

Добавление в бетонную смесь пластификатора позволяет повысить активность даже лежалого цемента.

Армирование

Бетонные сооружения, укрепленные арматурой, показывают более высокую прочность, чем не армированные изделия. Заменой или дополнением к арматуре выступает объемное армирование с помощью различных видов фибры. Бетон с добавлением фибры более прочный и устойчивый к образованию трещин, также он дает меньше усадки.

Обработка при укладке

Прочность бетона напрямую зависит от его плотности, то есть, отсутствия полостей и крупных пор.

Чтобы обеспечить высокую плотность, используется обработка свежеуложенного бетона вибрацией. Это дорогостоящее мероприятие, которое требует больших затрат труда и электроэнергии. Смеси, содержащие пластификатор, отличаются удобоукладываемостью и могут обойтись без обработки, что сэкономит немало средств и времени.

Уход за бетоном и оптимальные условия твердения

Как уже упоминалось, цемент — это вяжущее водного твердения, а это значит, что для образования кристаллической структуры плотного бетонного камня необходимо, чтобы высокая влажность поддерживалась, как минимум, до достижения критической прочности бетона.

Критической называют прочность бетона, по достижении которой неблагоприятные условия окружающей среды уже не оказывают на него существенного отрицательного влияния. Она указывается в проектной документации, обычно это 30–50%, иногда до 70% от расчетной прочности бетона. Как правило, критическая прочность бетона достигается на 7-е сутки.

Пока бетонная смесь сохраняет влажность, реакции гидратации продолжаются с образованием прочного материала.

Прочность бетона нарастает неравномерно: в первые сутки процессы идут наиболее быстро, затем их скорость постепенно снижается, что можно видеть на графике.

Расчетной прочности бетон достигает по истечении 28 суток. Медленный набор прочности продолжается многие месяцы после этого.

Чтобы бетон набрал расчетную прочность, необходимо обеспечить оптимальные условия твердения:

  1. влажность воздуха, близкая к 100%;
  2. температура воздуха 18–20 °С.
Читайте также:
Перила из нержавеющей стали: полезная информация для правильного выбора и эксплуатации

При влажности воздуха 40% твердение бетона практически прекращается.

Если окружающий воздух слишком сухой, применяется уход за бетоном: его поливают водой и укрывают пленкой для сохранения влажности.

Температура также является важным фактором, который влияет на прочность.

При снижении температуры окружающего воздуха процессы твердения бетона замедляются, а при температуре ниже 0°С — практически прекращаются, что видно из таблицы.

Поэтому основным мероприятием ухода за бетоном при зимнем бетонировании является сохранение тепла и обогрев уложенного бетона.

Для достаточно массивных, толстостенных конструкций бывает достаточно «метода термоса»: смесь замешивают из подогретых материалов (кроме цемента; его греть нельзя), прогревают теплым воздухом опалубку, а свежеуложенный бетон укрывают теплоизолирующими материалами. Поскольку реакции гидратации являются экзогенными, то есть протекают с выделением тепла, этого может быть достаточно, чтобы бетон успешно набрал критическую прочность. Технологи следят за температурным градиентом, не допуская слишком большой разницы температур у поверхности бетона и на глубине.

Если конструкция недостаточно габаритная или имеет тонкие стенки, такой метод не подходит; в этом случае применяют обогревающие мероприятия: устройство тепловых шатров, прогревание электродами, тепловыми матами и другие.

Как влияет замораживание на набор прочности бетона?

Если конструкция была залита и замерзла, не набрав критической прочности, а весной оттаяла, набор прочности продолжится, но в итоге прочность бетона будет ниже.

Независимо от применения сохраняющих тепло или прогревающих мероприятий при бетонировании в зимнее время целесообразно использовать противоморозные добавки, которые снижают температуру замерзания воды в смеси и ускоряют процессы гидратации цемента, позволяя бетону набирать прочность даже в условиях очень низких температур.

Обратная ситуация складывается при высоких температурах. В этом случае бетон схватывается слишком быстро, но может пересыхать, а это негативно влияет на прочность готового изделия. Поэтому в жару бетон поливают водой и укрывают.

Взаимосвязь прочности бетона и его морозостойкости и водонепроницаемости

Как уже было сказано, прочность бетона напрямую зависит от его плотности. Высокая плотность, в свою очередь, влияет на другие характеристики материала.

Бетон — материал пористый. Несмотря на свою плотность и твердость, он имеет большое количество пор и капилляров, которые могут впитывать воду. Поэтому при эксплуатации в условиях высокой влажности в порах бетонных конструкций могут развиваться бактерии, грибы, плесень. Продукты жизнедеятельности этих микроорганизмов приводят к разрушению бетона.

Если конструкция эксплуатируется в условиях низких температур, влага в порах бетона при замерзании расширяется и приводит к появлению трещин. С каждым циклом «замораживание—оттаивание» размер и количество микротрещин увеличиваются, разрушая бетон.

Вот почему бетон высокой плотности показывает более высокую устойчивость к воде и низким температурам: в нем меньше пор и они имеют маленький размер.

В целях дополнительной защиты от влаги применяются специальные добавки для объемной гидрофобизации, а также мастики и пропитки для бетона.

Классификация бетонов по прочности

Классы присваиваются бетонам по результатам испытаний, в ходе которых отливку в форме куба подвергают сжатию до разрушения.

В СССР бетоны классифицировались на марки, сейчас они подразделяются на классы.

Марка бетона обозначалась литерой «М» и числовым обозначением, которое соответствовало среднему выдерживаемому давлению, измеряемому в кг/см2.

Класс бетона обозначается литерой «В» и числовым обозначением, которое показывает предельную прочность бетона на сжатие в МПа (то есть, максимальное сжатие, которое образец выдерживает без разрушения).

Поэтому класс бетона точнее показывает его прочность, чем марка. Определить соответствие марки бетона классу можно по специальной таблице, но необходимо учитывать, что это соответствие не полное.

Для чего нужно знать прочность бетона

Планируя строительство, необходимо правильно выбрать бетон нужного класса прочности.

Разные конструкции предъявляют различные требования.

Например, деревянный дом не дает такую большую нагрузку на фундамент, как кирпичный, тем более, многоэтажный дом. Баня или гараж — менее ответственные постройки, чем жилой дом.

В то же время, избыточная прочность бетона тоже нежелательна, поскольку бетон высокого класса дороже.

Поэтому для каждого типа конструкций выбирается бетон подходящего класса:

  1. легкие бетоны класса В7,5 применяются для подготовительных работ;
  2. бетоны класса В12,5 — для бетонирования дорожек, стяжек, заливки фундаментов нетяжелых сооружений;
  3. В15 — при строительстве зданий до двух этажей;
  4. В20 — для ленточных фундаментов, лестниц и ненагруженных перекрытий;
  5. В22,5 — для фундаментов, дорожек, площадок, монолитных стен;
  6. В25 — для монолитных стен, бассейнов, фундаментов;
  7. В30 — для гидротехнических конструкций и мостов;
  8. В35 — для дамб, гидротехнических сооружений;
  9. В40 — для мостов, метро, плотин и других видов конструкций со специальными требованиями.

Методы определения прочности бетона

Для присвоения бетону класса прочности испытывают кубические образцы с размером ребра 150 мм. В ходе испытания образцы разрушаются.

Существуют и другие методы определения прочности бетона путем механического воздействия:

  1. Метод отрыва и скалывания. В ходе испытания из бетона выдергивается заранее заделанный стержень.
  2. Метод вдавливания. Используется специальный штамп или шариковый молоток (например, молоток системы Физделя, молоток Кашкарова).
  3. Метод упругого отскока.
Читайте также:
Расчет чердачного перекрытия по деревянным балкам

Последний относится к неразрушающим методам, что очень удобно, если нужно узнать прочность готовой конструкции: метод простой, точный и оперативный в применении. Для его проведения используется молоток Шмидта (склерометр), который используется также для определения прочности других материалов (например, кирпича). Поэтому молотки выпускаются с разными вариантами энергии удара.

Для испытания необходим участок конструкции площадью не менее 100 см2. Небольшие изделия должны быть закреплены. Молоток устанавливается перпендикулярно к зоне измерения. Его удар не должен приходиться на арматуру или крупные раковины.

На каждом участке производят не менее 10 замеров.

При ударе молоток замеряет значение отскока; по окончании испытаний высчитывается средняя величина с поправкой на угол, под которым молоток соприкасался с поверхностью, после чего с помощью кривых перевода высчитывается прочность материала на сжатие.

Разновидности бетона

Помимо классификации по прочности, бетоны подразделяются на группы и по другим признакам:

  1. по подвижности;
  2. по морозостойкости;
  3. по водостойкости;
  4. по плотности (легкие, особо легкие, тяжелые, особо тяжелые);
  5. по назначению;
  6. по виду вяжущего (полимерцементные, гипсовые, шлакощелочные, силикатные, цементные, специальные).

Популярные виды бетона

В современном строительстве некоторые виды бетона пользуются особым спросом:

  1. пенобетон;
  2. газобетон;
  3. фибробетон (с добавлением фибры);
  4. деревобетон (разновидность опилкобетона);
  5. полистиролбетон;
  6. кевларобетон (еще его называют ультрабетон);

Существует такая разновидность современного бетона, как кевларобетон, который имеет глянцевую поверхность, окрашивается в широкую гамму оттенков и может имитировать натуральные материалы, например, камень. Этот необычный материал очень популярен среди дизайнеров.

Современный бетон немыслим без высокотехнологичных химических добавок, которые помогают значительно экономить расходные материалы и затраты труда и электроэнергии и при этом получать качественный материал с нужными характеристиками.

Прочность бетона на сжатие

Когда перед человеком возникает вопрос о покупке бетонной смеси или готового изделия, то в первую очередь он задумывается о качестве продукции, ведь это напрямую связано с безопасностью строительного сооружения.

Определение понятия прочности бетона: марка и класс

Основополагающей характеристикой бетона является его показатель прочности, который выражается в виде класса и марки.

Для выполнения необходимых задач в строительстве пользуются соответствующими классами. Так, для гидросооружений нужен один класс, а при бетонировании фундамента под одноэтажный дом – другой.

Марка бетона «М» выражает усреднённые значения прочности, единицы измерения – кгс/см 2 , класс бетона обозначается литерой «В» и выражается в МПа. Разница между этими двумя понятиями выражается не только в виде буквы и единицы измерения.

Главное отличие заключается в том, что марка указывает на среднюю величину предела прочности, а класс – на точные значения, расхождение составляет меньше 5%. Для сложных расчётов используют класс бетона, т. к. с применением марки возникает риск ошибки, при котором настоящие показатели окажутся меньше расчётных. Например, в характеристиках указывается М100 и В7,5. Расшифровывается это так: точное усилие, необходимое для разрушения, составит 7,5 МПа, а обобщенная нагрузка равна 100 кгс/см 2 , т. е. фактически эта цифра может быть и 105, и 103,6, и 93, и 97,2 и пр.

Класс и марка бетона по прочности на сжатие по ГОСТ

Таблица 1 – Сравнительная характеристика бетонов разных классов и марок

Документы, которые применяются при определении прочности

Требуемая прочность жёстко регулируется. Есть в наличии несколько основных документов для вычисления этой характеристики:

  • ГОСТ 10180-2012 – применяется для образцов из готовой бетонной смеси;
  • ГОСТ 28570-2019 – рассчитан для бетонных образцов;
  • ГОСТ 22690-2015 – для крупных сооружений без создания проб-образцов.

Способы определения прочности: испытание бетона на сжатие

Существует два метода:

  • разрушающий;
  • неразрушающий.

При первом способе измеряют минимальные усилия, приложенные для поломки кубов и цилиндров, которые вырезают, выпиливают или выбуривают из целых изделий. Скорость увеличения силы нагрузки при этом постоянна. После выполнения испытания вычисляется итоговое значение таких усилий.

При втором способе нахождения требуемого показателя воздействуют механически на заданное место (удар, отрыв, скол, вдавливание, отрыв со скалыванием, упругий отскок). Точка приложения прибора не должна быть на краю или напротив арматуры. Далее находят результат по выраженной градации.

Рассчитывать на полную правдивость не стоит, имеется погрешность до 10 % для каждого из видов проверок.

Как выбирают образцы при разрушающем методе

  1. Пробы из бетонной смеси.

Для испытаний приготавливают образцы кубической и цилиндрической формы. Эталонным считается куб с длинной грани 150 мм.

  • Все экземпляры создают в специальных формах, перед использованием конструкции смазывают маслом. Далее наполнят её бетонной смесью и уплотняют.
  • Утрамбовывают при помощи штыкования стальным стержнем, виброплощадки или глубинного вибратора.
  • Через сутки все затвердевшие образцы достают и размещают в боксе с нормальными условиями (влажность – 95%, температура – +20 °С). Иногда заготовки размещают в водной среде или в автоклаве.
  1. Образцы из готовых бетонных изделий.
Читайте также:
Пеллетные котлы: цены и характеристики моделей

Экземпляры для проверки прочности получают методом вырубки, выпиливания или выбуривания из целых изделий. В месте отбора не должно быть арматуры в точке, где извлечение не понесёт за собой снижение несущей способности. Пробы делают вдали от стыков и края изделия. Образцы извлекают из средней части пробы как на рисунке.

Предварительная подготовка к испытаниям

Прежде чем приступить непосредственно к испытаниям, все образцы измеряют и осматривают – нет ли трещин, сколов, рытвин. Если имеются скалывания более 10 мм, рытвины диаметром 10 мм и более и глубиной от 5 мм, образцы выбраковывают.

Также производят обмеры на наличие линейной погрешности, несоответствие перпендикулярности близлежащих граней, смещения от прямолинейности и плоскостности. Если обнаружены такие недочёты, грани и плоскости подвергают шлифованию или выравнивают быстротвердеющим веществом толщиной не больше 5 мм.

Как образцы бетона проходят испытания

Все приготовленные образцы одной группы испытывают на прочность в течение одного часа. Силовое нагружение производят не прерываясь, с постоянной скоростью увеличения нагрузки до разрушения. При этом, время от начала нагружения до его окончания – не меньше 30 с.

Во время проверки пользуются специальными строительными стендами:

  • образцы кладут на нижнюю плиту пресса по центру;
  • после совмещают верхнюю плиту и экземпляр, чтобы они находились плотно друг к другу;
  • далее подают силовую нагрузку со скоростью 0,6±0,2 МПа/с.

Расчёты испытаний: формула

Прочность бетона на сжатие (R, МПа) считают с погрешностью до 0,1 МПа по формуле:

Обозначения:

  • F – максимальная сила, Н;
  • A – площадь грани под нагрузкой, мм;
  • α – масштабный коэффициент, который приводит прочность к эталонной;
  • KW – коэффициент, необходимый для ячеистого бетона, учитывающий влажность образцов.

Коэффициенты высчитывались экспериментально и представлены в таблице 2.

Таблица 2 – Масштабный коэффициент α

KW = 1, исключение – ячеистый бетон, его можно найти в таблице ГОСТа 10180.

Показатель прочности бетона рассчитывают как среднее арифметическое от прочности всех образцов, участвовавших в проверке: если образцов 3, то среднее арифметическое значение двух образцов с высшей прочностью.

Показатель прочности на сжатие – это такой показатель, который невозможно подделать. Проверку этой характеристики выполняют только аккредитованные лаборатории и строительные организации, которые сами подвергаются неоднократным проверкам – у них есть лицензии, подтверждающие право на выполнение тех или иных работ.

Класс и марка бетона по прочности

Строительство – постоянный процесс. Всегда есть нужда в новом здании, дороге или архитектурном объекте. Среди множества строительных материалов особой популярностью пользуется бетон. Его востребованность обусловлена повышенной прочностью, долговечностью и надежностью. Срок эксплуатации бетонных сооружений может доходить до десятков и сотен лет.

Что такое бетон

Бетон – монолитный камень искусственного происхождения, применяемый при строительстве различных объектов. Процесс изготовления представляет собой смешивание вяжущего вещества, наполнителей, разных химических добавок и воды.

Классический состав бетона:

  • песок;
  • вода;
  • щебень;
  • цемент.

Соотношение компонентов различается в зависимости от производственной необходимости и качества сухих составляющих раствора.

Строительная сфера находится в постоянном развитии. Это не обошло стороной и бетон. Применение различных наполнителей позволяет улучшать качественные характеристики строительного камня и расширяет его разновидности:

  • пескобетон;
  • гипсобетон;
  • силикатный бетон;
  • шлакобетон;
  • пемзобетон;
  • туфобетон;
  • сталебетон;
  • железобетон;
  • полимербетон.

При добавлении различных химических добавок и присадок можно менять свойства бетонной смеси:

  • водонепроницаемость;
  • морозоустойчивость;
  • быстрое или медленное схватывание;
  • подвижность;
  • усадка;
  • пластичность.

В зависимости от структуры заполнителя бетон различается по типам:

  • особо легкий – вес кубического метра раствора не превышает 500 кг;
  • легкий – вес составляет 500-1800 кг/м 3 ;
  • тяжелый – вес находится в диапазоне 1800-2700 кг/м 3 ;
  • особо тяжелый – вес превышает 2700 кг/м 3 .

Многообразие состава позволяет применять бетон для строительства объектов различной направленности.

Отличие марки от класса

Прочность – главное качество, которое ценится в бетоне. Она позволяет зданиям и конструкциям выдерживать необходимые нагрузки и противостоять условиям внешней среды.

Марка бетона

Марка – показатель, зависящий от количества и качества цемента в бетонном растворе. Обозначается латинской буквой М, а цифра рядом с ней показывает прочность в кгс/см 2 . Учитывает только процентное содержания цемента в строительной смеси.

Класс бетона по прочности

Класс – показатель, определяющий уровень прочности бетона на сжатие. Обозначается латинской буквой В, а цифра рядом показывает значение в МПа.

В проектной строительной документации всегда указывается класс бетона.

Сравнение и различие

Хотя и марка, и класс обозначают прочность бетона, между ними есть и принципиальные отличия.

Марка указывает на технические свойства бетона, а класс – на уровень прочности при эксплуатации. Первый параметр учитывает соотношение цемента в растворе, а второй показывает предельную нагрузку, которую должна вынести конструкция.

Понятия марки и класса взаимосвязаны, их точные значения помогут сделать правильный выбор при закупке материалов для строительства.

Цифра рядом с буквенным показателем класса и марки бетона является показателем прочности. Таблица соотношений по ГОСТ 26633-91 поможет подробнее в этом разобраться. Также это способ точно определить технические характеристики строительной смеси для лучшего применения в частном и промышленном возведении конструкций и зданий.

Читайте также:
Отделка потолка вагонкой: дизайн, крепление и монтаж на примерах фото и видео

Таблица 1 – Прочность бетона на сжатие по марках и классам

Класс бетона Марка бетона Средняя прочность на сжатие, кгс/см 2
В3,5 М50 45,8
В5 М75 65,5
В7,5 М100 98,2
В10 М150 131,0
В12,5 М150 163,7
В15 М200 196,5
В20 М250 261,9
В22,5 М300 294,7
В25 М350 327,4
В27,5 М350 360,2
В30 М400 392,9
В35 М450 458,4
В40 М550 523,8
В45 М600 589,4
В50 М700 654,8
В55 М700 720,3
В60 М800 785,8
В65 М900 851,3
В70 М900 916,8
В75 М1000 982,3
В80 М1000 1047,7
В90 М1150 1178,7
В100 М1300 1309,6
В110 М1450 1440,6
В120 М1500 1571,6

Также различают отдельный класс жаропрочных бетонов – табл. 2.

Таблица 2 – Классификация жаропрочных бетонов

Класс бетона по предельно допустимой температуре применения Предельно допустимая температура применения, °С
И3 300
И6 600
И7 700
И8 800
И9 900
И10 1000
И11 1100
И12 1200
И13 1300
И14 1400
И15 1500
И16 1600
И17 1700
И18 1800

Способы определения прочности бетона

Для установки и точного определения марки и класса бетона проводятся испытания в лабораторных условиях. Образцы подготавливаются в соответствии с требованиями ГОСТ 10180-2012:

  • в качестве образцов могут использоваться только трехмерные объемные фигуры – куб и цилиндр. Ребро куба измеряется в мм и может иметь только определенные значения – 100, 150, 200, 250, 300. Требования для цилиндра следующие – диаметр 100, 150, 200, 250 и 300 мм, а высота не должна быть меньше диаметра основания;
  • образцы изготовляются при температуре 20℃ и влажности 40-60%;
  • образцы набирают прочность в течение 28 дней.

Контроль прочности осуществляется двумя способами:

  • механический. На образец оказывают физическое воздействие с нарастанием усилий. Для оценки используют молоток весом 400-600 г или зубило. Используя эти инструменты, проводят удары по поверхности бетонного куба или цилиндра и оценивают следы, которые они оставляют на поверхности;

Важно, чтобы удар был звонким. Это свидетельствует, что в образце не содержится пустот и воздушных полостей, которые могут влиять на результаты испытаний.

  • ультразвуковой. Вариант, который не оказывает разрушительного воздействия на образец. Прибор определяет скорость ультразвуковых волн, проходящих через бетонный куб или цилиндр.

Факторы, оказывающие влияние на прочность бетона

Бетон – строительная смесь, прочность которой зависит от многих переменных:

  • качество связующего вещества – цемента. При использовании марок цемента низкого качество снижаются и технические характеристики бетона;
  • количество цемента в бетонном растворе. Чем больше вяжущего вещества в бетонной смеси, тем прочнее окажется готовое изделие. Важно не переусердствовать в процентном содержании цемента. Это ухудшает подвижность строительной смеси, она быстро схватывается, оставляя пустоты и воздушные полости;
  • соотношение воды и цемента. Оптимальное количество жидкости подбирается в зависимости от фракции сухих компонентов. Излишнее содержание воды приводит к тому, что увеличивается подвижность бетонной смеси, она расплывается, образуются поры, снижающие прочность готового продукта;
  • размер гранул и минеральный состав крупного и мелкого заполнителей. Фракции подбираются с небольшим расхождением значений для однородности раствора при перемешивании;
  • отсутствие мусора и примесей. Наличие частиц пыли и глины, а также веществ органического происхождения в сухих компонентах снижает прочностные характеристики конечного продукта;
  • вода. Для замешивания качественного бетонного раствора подходит только техническая вода без примесей солей и органики;
  • вибрирование. Очень важная операции при укладке бетона. Позволяет заполнить все уголки формы. Сжижение строительной смеси выводит все пузырьки воздуха, не позволяет образовываться порам и полостям;
  • соблюдение внешних условий. Резкие перепады температуры и быстрое испарение воды нарушают технологию производства. Это приводит к образованию трещин, бетон крошится, и ухудшается его прочность.

Сфера применения бетона в зависимости от класса и марки

Марка и класс бетона Область применения
М50; В3,5

При строительстве одного здания может применяться бетон разных марок и классов. Основание, фундамент, подвал, стены нижних и верхних этажей, лестницы и площадки требуют разного состава строительной смеси. Это обусловлено различием в нагрузке, которую они должны выдерживать.

Заключение

Марка и класс бетона – важнейшие показатели, которые учитываются при планировании строительства любого объекта. Это первое, на что обращают внимание при закупке материалов.

Прочность – величина, не отличающаяся стабильностью. Она зависит от множества факторов. Прочность и долговечность конечного продукта повысит правильная технология производства и подбор качественных компонентов.

При строительстве важно в самом начале определиться с маркой и классом бетона, которые подходят для возведения конкретного объекта. Так можно по максимуму использовать прочностные характеристики бетона, не переплачивая за более дорогой состав.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: