Правильный расчет тепловой мощности системы отопления по площади помещения

Правильный расчет тепловой мощности системы отопления по площади помещения

Прежде, чем приступить к монтажу автономной системы отопления в собственном доме или квартире, владельцу недвижимости необходимо иметь проект. Создание его специалистами подразумевает, в том числе, что будет выполнен расчет тепловой мощности для помещения, имеющего определенную площадь и объем. На фото можно увидеть, как может выглядеть отопительная система частного домовладения.

Необходимость расчета тепловой мощности системы отопления

Потребность в вычислении тепловой энергии, необходимой для обогрева комнат и подсобных помещений, связана с тем, что нужно определить основные характеристики системы в зависимости от индивидуальных особенностей проектируемого объекта, включая:

  • назначение здания и его тип;
  • конфигурацию каждого помещения;
  • количество жильцов;
  • географическое положение и регион, в котором находится населенный пункт;
  • прочие параметры.

Расчет необходимой мощности отопления является важным моментом, его результат используют для вычисления параметров отопительного оборудования, которое планируют установить:

  1. Подбор котла в зависимости от его мощности. Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно.
  2. Необходимость согласовывать подключение к магистральному газопроводу. Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей.
  3. Выполнение расчетов периферийного оборудования. Расчет тепловых нагрузок на отопление необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д.

Варианты приблизительных расчетов

Выполнить точный расчет тепловой мощности системы отопления довольно сложно, его могут сделать только профессионалы, имеющие соответствующую квалификацию и специальные знания. По этой причине данные вычисления обычно поручают специалистам.

В тоже время существуют и более простые способы, позволяющие приблизительно оценить величину требуемой тепловой энергии и их можно сделать самостоятельно:

  1. Нередко применяют расчет мощности отопления по площади (детальнее: “Расчет отопления по площади – определяем мощность отопительных приборов”). Считается, что жилые дома возводятся по проектам, разработанным с учетом климата в определенном регионе, и что в проектных решениях заложено использование материалов, которые обеспечивают требуемый тепловой баланс. Поэтому при расчете принято умножать величину удельной мощности на площадь помещений. Например, для Московского региона данный параметр находится в пределе от 100 до 150 ватт на один «квадрат».
  2. Более точный результат будет получен, если учитывать объем помещения и температуру. Алгоритм вычисления включает высоту потолка, уровень комфорта в отапливаемом помещении и особенности дома.

Используемая формула выглядит следующим образом: Q = VхΔTхK/860, где:

V – объем помещения;
ΔT – разница между температурой внутри дома и снаружи на улице;
К – коэффициент теплопотерь.

Поправочный коэффициент позволяет учесть конструктивные особенности объекта недвижимости. Например, когда определяется тепловая мощность системы отопления здания, для строений с обычной кровлей из двойной кирпичной кладки К находится в диапазоне 1,0–1,9.

  • Метод укрупненных показателей. Во многом похож на предыдущий вариант, но его применяют для вычисления тепловой нагрузки для систем отопления многоквартирных зданий или других больших объектов.
  • Все три вышеперечисленные способы, позволяющие сделать расчет необходимой теплоотдачи, дают приблизительный результат, который может отличаться от реальных данных или в меньшую, или в большую сторону. Понятно, что монтаж маломощной отопительной системы не обеспечит требуемую степень обогрева.

    В свою очередь, избыток мощности у отопительного оборудования приведет к быстрому износу приборов, перерасходу топлива, электроэнергии, а соответственно и денежных средств. Подобные расчеты обычно применяют в несложных случаях, например, при выборе котла.

    Точное вычисление тепловой мощности

    Степень теплоизоляции и ее эффективность зависят от того, насколько качественно она сделана и от конструктивных особенностей зданий. Основная часть теплопотерь приходится на наружные стены (примерно 40%), затем следуют оконные конструкции (около 20%), а крыша и пол – это 10%. Остальное тепло покидает дом через вентиляцию и двери.

    Поэтому расчет тепловой мощности системы отопления должен учитывать данные нюансы.

    Для этого используют поправочные коэффициенты:

    • К1 зависит от типа окон. Двухкамерным стеклопакетам соответствует 1, обычному остеклению – 1,27, трехкамерному окну – 0,85;
    • К2 показывает степень теплоизоляции стен. Находится в пределе от 1 (пенобетон) до 1,5 для бетонных блоков и кладки в 1,5 кирпича;
    • К3 отражает соотношение между площадью окон и пола. Чем больше оконных рам, тем сильнее потери тепла. При 20% остекления коэффициент равен 1, а при 50% он увеличивается до 1,5;
    • К4 зависит от минимальной температуры снаружи здания на протяжении отопительного сезона. За единицу принимают температуру -20 °C, а затем на каждые 5 градусов прибавляют или вычитают 0,1;
    • К5 учитывает количество наружных стен. Коэффициент для одной стены равен 1, если их две или три, тогда он составляет 1,2, когда четыре – 1,33;
    • К6 отражает тип помещения, которое находится над определенной комнатой. При наличии сверху жилого этажа величина поправки – 0,82, теплого чердака – 0,91, холодного чердака – 1,0;
    • К7 – зависит от высоты потолков. Для высоты 2,5 метра это 1,0, а для 3-х метров – 1,05.

    Когда все поправочные коэффициенты известны, делают расчет мощности системы отопления для каждого помещения, используя формулу:

    • Qi=qхSiхK1хK2хK3хK4хK5хK6хK7, где q =100 Вт/м², а Si – площадь комнаты.

    Расчетная величина увеличивается, если коэффициент больше 1 или уменьшает, если он меньше единицы. Узнав данный параметр для каждого помещения, узнают величину мощности всей отопительной системы согласно формуле: Q=Σ Qi, i = 1…N, где N – это общее количество помещений в здании (прочитайте также: “Тепловой расчет помещения и здания целиком, формула тепловых потерь”).

    Как правило, для обеспечения запаса тепловой энергии на всевозможные непредвиденные случаи результат увеличивают на 15–20%. Это могут быть сильнейшие морозы, разбитое окно, поврежденная теплоизоляция и т.д.

    Пример выполнения расчета

    Поправочные коэффициенты в данном случае будут равны:

    • К1 (двухкамерный стеклопакет) = 1,0;
    • К2 (стены из бруса) = 1,25;
    • К3 (площадь остекления) = 1,1;
    • К4 (при -25 °C -1,1, а при 30°C) = 1,16;
    • К5 (три наружные стены) = 1,22;
    • К6 (сверху теплый чердак) = 0,91;
    • К7 (высота помещения) = 1,0.

    В результате полная тепловая нагрузка будет равна:

    Q=100 Вт/ м²х135 м²х1,0х1,25х1,1х1,16х1,22х0,91х1,0 = 23,9 кВт.

    В итоге мощность отопительной системы составит: W=Qх1,2 = 28,7 кВт.

    В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной:

    100–150 Вт х150м² = 15–22,5 кВт

    Отопительная система функционировала бы без запаса по мощности – на пределе. Приведенный пример является подтверждением важности применения точных способов, позволяющих определять тепловые нагрузки на отопление.

    Пример расчета тепловой мощности системы отопления на видео:

    Сколько тепла в кВт вам требуется для обогрева дома — проверяем на калькуляторе!

    Если мы собираемся по максимуму экономить в той или иной сфере жизни, то необходимо хорошо представлять: куда, в каких количествах и на что тратятся наши деньги. А одной из наиболее чувствительных статей расходов семейного бюджета в наше время становятся коммунальные платежи. И если с затратами на электроэнергию относительная ясность имеется, так как по большей части все на виду и довольно понятно, то с отоплением – несколько сложнее.

    Сколько тепла нам требуется для обогрева жилья?

    Неважно, какая схема или система применяется для этих целей, в первую очередь необходимо обладать информацией, сколько тепла нам требуется для обогрева жилья? Да, вопрос звучит именно так, пока без перехода в «денежную плоскость». Да мы и не сможет спрогнозировать финансовые расходы, пока не выразим требуемую тепловую энергию в каких-то понятных величинах. Например, в киловаттах.

    Вот этим и займемся сегодня.

    Немного общей информации – что такое требуемое количество тепла?

    Очень вкратце, все это и так известно – просто требуется небольшая систематизация.

    Современному человеку для комфортного проживания требуется создание определённого микроклимата, одной из важнейших составляющих которого является температура воздуха в помещении. И хотя «тепловые пристрастия» могут разниться, можно смело утверждать, что для большинства людей эта зона «температурного комфорта» лежит в диапазоне 18÷23 градуса.

    Но когда на улице, например, отрицательная температура, то естественные термодинамические процессы стремятся все подвести под «общую планку», и тепло начинает из жилой зоны уходить. Тепловые потери – это совершенно нормальное с точки зрения физики явление. Вся система утепления жилья направлена на максимальное снижение таких потерь, но полностью их устранить невозможно. А отсюда вывод — отопление дома как раз и предназначено для восполнения этих самых тепловых потерь.

    От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.

    Как определиться с ними их количественно?

    Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².

    Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?

    Так что лучше применить иной, более «скрупулезный» метод подсчета, в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора.

    Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.

    И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.

    Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.

    Ниже расположен калькулятор, а под ним будут размещены необходимые краткие пояснения по работе с программой.

    Калькулятор расчета необходимой тепловой мощности для отопления помещений

    Пояснения по проведению расчетов

    Последовательно уносим данные в поля калькулятора.

    • Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.

    Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.

    • Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
    • Следующая группа данных учитывает особенности расположения помещения:

    Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).

    Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.

    Главный редактор проекта Stroyday.ru. Инженер.

    — Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.

    — Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.

    — Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.

    • Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
    • Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.

    Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.

    Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.

    По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.

    А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.

    Расчет отопления по площади помещения — подробный разбор методов

    Если у вас возникла необходимость замены старых, вышедших из строя радиаторов, или же вы собираетесь произвести установку новой системы в строящемся доме, следует знать, как произвести расчет отопления по площади помещения.

    Чтобы работа системы была эффективной, следует точно определить количество секций устанавливаемых радиаторов, чтобы теплоотдача и прогревание были оптимальными.

    Если секций будет недостаточно, то комната никогда не прогреется должным образом, а большое их количество приведет к неэкономному и чрезмерному расходованию тепла, и соответственно пагубно скажется на ваших финансах и бютжете. Потребности помещений стандартного типа и планировки можно определить с помощью довольно простых расчетов, а чтобы добиться большей точности, необходимо обязательно учитывать и некоторые дополнительные параметры и особенности.

    Простые вычисления по площади

    Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным.
    К тому же он не учитывает таких особенностей, как:

    • число окон и тип стеклопакетов на них;
    • количество в комнате наружных стен;
    • толщина стен здания и из какого материала они состоят;
    • тип и толщина использованного утеплителя;
    • диапазон температур в данной климатической зоне.

    Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:

    18 кв.м х 100 Вт = 1800 Вт

    То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:

    1800 Вт / 170 Вт = 10,59

    Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.

    Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.

    Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:

    25 кв.м / 1,8 кв.м = 13,89

    Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).

    Рассмотрим метод вычислений для комнат с высокими потолками

    Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:

    24 кв.м х 3 м = 72 куб.м (объем комнаты).

    72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).

    Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:

    2952 Вт / 180 Вт = 16,4

    Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.

    Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.

    Дополнительные параметры, которые нужно учесть

    Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:

    • для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
    • если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
    • на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
    • экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.

    В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.

    Специфика и другие особенности

    Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:

    • температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
    • отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
    • установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.

    При замене старых чугунных батарей, которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.

    Климатические зоны тоже важны

    Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.

    Климатические зоны также имеют свои коэффициенты:

    • средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
    • северные и восточные регионы: 1,6;
    • южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).

    Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.

    Выводы

    Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.

    Если вы сомневаетесь в своих силах и знаниях – доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.

    Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

    Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

    Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

    В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

    Тепловой расчёт отопления: общий порядок

    Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

    Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

    Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

    Основные задачи расчёта и проектирования системы отопления:

    • наиболее достоверно определить тепловые потери;
    • определить количество и условия использования теплоносителя;
    • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

    При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

    На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

    Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

    В результате теплового расчёта в наличии будет следующая информация:

    • число тепловых потерь, мощность котла;
    • количество и тип тепловых радиаторов для каждой комнаты отдельно;
    • гидравлические характеристики трубопровода;
    • объём, скорость теплоносителя, мощность теплового насоса.

    Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

    Нормы температурных режимов помещений

    Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

    Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

    Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

    Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

    А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

    В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

    Для нежилых помещений офисного типа площадью до 100 м 2 :

    • 22-24°С – оптимальная температура воздуха;
    • 1°С – допустимое колебание.

    Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

    Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

    И всё же для конкретных помещений квартиры и дома имеем:

    • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
    • 19-21°С – кухня, туалет, допуск ±2°С;
    • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
    • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

    Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

    Расчёт теплопотерь в доме

    Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

    Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

    Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

    В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

    Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

    Итак, объём утечек тепла от здания вычисляется по следующей формуле:

    Qi – объём теплопотерь от однородного вида оболочки здания.

    Каждая составляющая формулы рассчитывается по формуле:

    Q=S*∆T/R, где

    • Q – тепловые утечки, В;
    • S – площадь конкретного типа конструкции, кв. м;
    • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
    • R – тепловое сопротивление определённого типа конструкции, м 2 *°C/Вт.

    Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

    Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

    R=d/k, где

    • R – тепловое сопротивление, (м 2 *К)/Вт;
    • k – коэффициент теплопроводности материала, Вт/(м 2 *К);
    • d – толщина этого материала, м.

    В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

    В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

    Определение мощности котла

    Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

    Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

    Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

    Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

    Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

    • Sпомещения– общая площадь отапливаемого помещения;
    • Руделльная– удельная мощность относительно климатических условий.

    Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

    Существует иное соотношение, которое учитывает этот параметр:

    Ркотла=(Qпотерь*S)/100, где

    • Ркотла– мощность котла;
    • Qпотерь– потери тепла;
    • S – отапливаемая площадь.

    Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

    Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

    Ркотла=(Qпотерь*S*К)/100, где

    К – будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.

    Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

    Особенности подбора радиаторов

    Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

    Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

    Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

    1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м 2 ), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м 2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
    2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м 3 (эмпирическая величина).
    3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

    Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

    Гидравлический расчёт водоснабжения

    Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

    Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

    Объём горячей воды в отопительной системе рассчитывается по формуле:

    W=k*P, где

    • W – объём носителя тепла;
    • P – мощность котла отопления;
    • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

    В итоге конечная формула выглядит так:

    W = 13.5*P

    Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

    Эта величина помогает оценить тип и диаметр трубопровода:

    V=(0.86*P*μ)/∆T, где

    • P – мощность котла;
    • μ – КПД котла;
    • ∆T – разница температур между подаваемой водой и водой обратном контуре.

    Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

    Пример теплового расчёта

    В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

    Обозначим исходные параметры дома, необходимые для проведения расчетов.

    • высота этажа – 3 м;
    • малое окно фасадной и тыльной части здания 1470*1420 мм;
    • большое окно фасада 2080*1420 мм;
    • входные двери 2000*900 мм;
    • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

    Общая ширина постройки 9.5 м 2 , длинна 16 м 2 . Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

    Начинаем с расчёта площадей однородных материалов:

    • площадь пола – 152 м 2 ;
    • площадь крыши – 180 м 2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
    • площадь окон – 3*1.47*1.42+2.08*1.42=9.22 м 2 ;
    • площадь дверей – 2*0.9+2*2*1.4=7.4 м 2 .

    Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м 2 .

    Переходим к расчёту теплопотерь на каждом материале:

    • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт;
    • Qкрыша=180*40*0.1/0.05=14400 Вт;
    • Qокно=9.22*40*0.36/0.5=265.54 Вт;
    • Qдвери=7.4*40*0.15/0.75=59.2 Вт;

    А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

    В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

    Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

    Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

    Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

    В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

    Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

    Выводы и полезное видео по теме

    Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

    Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

    Ещё один вариант расчёта утечек тепла в типичном частном доме:

    В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

    Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

    Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

    Расчет системы отопления

    Владельцу отопительной сети бывает трудно найти вразумительный ответ, как сделать расчет домашнего отопления. Это происходит одновременно из-за большой сложности самого расчета, как такового, и вследствие предельной простоты получения искомых результатов, о чем обычно специалисты не любят распространяться, считая, что и так все понятно.

    По большому счету сам процесс расчета нас интересовать не должен. Нам важно как-то получить правильный ответ на имеющиеся вопросы о мощностях, диаметрах, количествах… Какое оборудование применить? Ошибки здесь быть не должно, иначе произойдет двойная или тройная переплата. Как же правильно рассчитать систему отопления частного дома?

    Почему большая сложность

    Расчет системы отопления с допустимыми погрешностями под силу разве что лицензированной организации. Ряд параметров в бытовых условиях просто не определимы.

    • Сколько энергии теряется из-за обдува ветром? — а когда подрастет дерево рядом?
    • Сколько солнце загоняет энергии в окна? — а сколько будет, если окна не помыть полгода?
    • Сколько тепла уходит с вентиляцией? — а после образования щели под дверью из-за отсутствия замены уплотнителя?
    • Какая реальная влажность пенопласта на чердаке? — а зачем она нужна, после того как его подъедят мыши….

    Во всех вопросах показана существующая динамика изменения теплопотерь с течением времени у любого дома. Зачем же тогда точность на сегодня? Но даже на текущий момент, нельзя в бытовых условиях высчитать точно параметры системы отопления исходя из теплопотерь.
    Гидравлический расчет тоже сложный.

    Как определить теплопотери

    Известна некая формула, согласно которой теплопотери напрямую зависят от отапливаемой площади. При высоте потолка до 2,6 метра в самый холодный месяц в «нормальном» доме теряем 1 кВт с 10 м кв. Мощность отопления должна это перекрыть.

    Реальные теплопотери частных домов чаще находятся в пределах от 0,5 кВт/10 м кв. до 2,0 кВт/10 м кв. Этот показатель характеризует энергосберегающие качества дома в первую очередь. И меньше зависит от климата, хоть его влияние остается значительным.

    Какие удельные теплопотери будут у дома, кВт/10 м кв.?

    • 0,5 – энергосберегающий дом
    • 0,8 – утепленный
    • 1,0 – утепленный «более-менее»
    • 1,3 – слабая теплоизоляция
    • 1,5 – без утепления
    • 2,0 – холодные тонкие материалы, имеются сквозняки.

    Общие теплопотери для дома можно узнать умножив приведенное значение на отапливаемую площадь, м. Но это все нас интересует для определения мощности теплогенератора.

    Расчет мощности котла

    Недопустимо принимать мощность котла исходя из теплопотерь больше чем 100 Вт/м кв. Это значит отапливать (засорять) природу. Теплосберегающий дом (50 вт/м кв.) делается, как правило, по проекту, в котором расчет системы отопопления произведен. Для других домов принимается 1кВт/10 м кв., и не больше.

    Если дом не соответствует названию «утепленный», особенно для умеренного и холодного климата, значит он должен быть приведен в такое состояние, после чего уже подбирается отопление по тому же расчету – 100 Вт на метр квадратный.

    Расчет мощности котла выполняется по следующей формуле – теплопетери умножить на 1,2,
    где 1,2 – резерв мощности, обычно используемый для нагрева бытовой воды.
    Для дома 100 м кв. – 12 кВт или чуть больше.

    Расчеты показывают, что для не автоматизированного котла резерв может быть и 2,0, тогда топить нужно аккуратно (без закипания), но можно быстрее разогревать дом при наличии и мощного циркуляционного насоса. А если в схеме имеется теплоаккумулятор то и 3,0 – допустимые реалии по теплогенерации. Но не окажутся ли они неподъемными по цене? Об окупаемости оборудования речь уже не идет, только об удобстве пользования…

    Послушаем эксперта, он расскажет, как лучше подобрать котел на твердом топливе для дома, и какую мощность принять…

    При выборе твердотопливного котла

    • Стоит рассматривать только твердотопливные котлы классической конструкции, как надежные, простые и дешевые и лишенные недостатков бочкообразных устройств под названием «длительного горения» …В обычном твердотопливном котле верхняя загрузочная камера всегда даст немного дыма в помещение. Более предпочтительны котлы с фронтальной камерой загрузки, особенно, если они установлены в жилом доме.
    • Чугунные котлы требуют защиту от холодной обратки, боятся залпового вброса холодной воды, например, при включении электричества. Качественную схему нужно предусмотреть заранее.
    • Защита от холодной обратки также желательна для любого вида котла, чтобы не образовывался агрессивный конденсат на теплообменнике, при его температуре ниже 60 град.
    • Твердотопливный котел желательно брать повышенной мощности, например, двухратной мощности от требуемой. Тогда не нужно будет постоянно стоять у маломощного котла и подбрасывать дрова, чтобы он развил нужную мощность. Процесс при не интенсивном горении будет на порядок комфортнее…
    • Желательно приобретать котел с подачей вторичного воздуха, для дожига СО при неинтенсивном горении. Повышаем КПД и комфортность топки.

    Распределение мощности по дому

    Генерируемая котлом мощность должна равномерно разойтись по всему дому, не оставить холодных зон. Равномерный прогрев здания будет обеспечен, если мощность установленных радиаторов в каждой комнате будет компенсировать ее теплопотери.

    Суммарная мощность всех радиаторов должна быть немного большей чем у котла. В дальнейшем мы будем исходить из следующих расчетов.

    Во внутренних комнатах радиаторы не устанавливаются, возможен лишь теплый пол.

    Чем длиннее наружные стены комнаты и чем больше в них площадь остекления, тем больше она теряет тепловой энергии. В комнате с одним окном к обычной формуле расчета теплопотерь по площади применяется поправочный коэффициент (приблизительно) 1,2.
    С двумя окнами – 1,4, угловая с двумя окнами – 1,6, угловая с двумя окнами и длинными наружными стенами – 1,7, например.

    Вычисление мощности и выбор параметров устанавливаемых радиаторов

    Производители радиаторов указывают паспортную тепловую мощность своих изделий. Но мелко-неизвестные при этом завышают данные как хотят (чем мощнее – лучше купят), а крупные указывают значения для температуры теплоносителя 90 град и др., которые редко бывают в реальной отопительной сети.

    Поэтому принято считать, что в среднем секция радиаторов (500 мм между патрубками вне зависимости от дизайна, материала) будет реально, без перегрева котла, отдавать тепловую мощность около 150 Вт.

    Тогда обычный 10 секционный радиатор из магазина – принимается как 1,5 кВт. Угловая комната с двумя окнами площадью 20 м кв. должна терять энергии 3 кВт (2кВт умножить на коэффициент 1,5). Следовательно, под каждым окном в данной комнате нужно разместить
    минимум по 10 секций радиатора – по 1,5 кВт.

    Для полноценной системы отопления желательно не учитывать мощность теплого пола – радиаторы должны справиться сами. Но чаще удешевляют радиаторную сеть в 2 – 4 раза, — только лишь для доп. подогрева и создания тепловых завес. Как совмещать радиаторы с теплым полом

    В чем особенность гидравлического расчета

    Если котел уже подобран исходя из площади, то почему бы не подобрать подобным методом насос и трубы, тем более, что шаг градации их параметров намного больше, чем мощности у котлов. Грубый подбор в магазине ближайшего большего параметра не требует точнейших расчетов, если сеть типична и компактна и применяются стандартизированное оборудование – циркуляционные насосы, радиаторы и трубы для отопления.

    Так для дома площадью 100 м кв. предстоит выбрать насос 25/40, и трубы 16 мм (внутренний диаметр) для группы радиаторов до 5 шт. и 12 мм для подключения 1 — 2 шт. радиаторов. Как бы мы не старались усовершенствовать свой гидравлический расчет, ничего другого выбрать не придется…
    Для дома площадью 200 м кв. – соответственно насос 25/60 и трубы от котла 20 мм (внутренний д.) и далее по разветвлениям как указано выше….

    Для совершенно не типичных большой протяженности сетей (котельная находится на большом расстоянии от дома) действительно лучше рассчитать гидравлическое сопротивление трубопровода, исходя из обеспечения доставки необходимого количества теплоносителем по мощности и подобрать особенный насос и трубы согласно расчета…

    Подбор параметров насоса для отопления дома

    Конкретнее о выборе насоса для котла в доме на основе тепловых гидравлических расчетов. Для обычных 3-х скоростных циркуляционных насосов, выбираются следующие их типоразмеры:

    • для площади до 120 м кв. – 25-40,
    • от 120 до 160 – 25-50,
    • от 160 до 240 – 25-60,
    • до 300 – 25-80.

    Но для насосов под электронным управлением Grundfos рекомендует чуть увеличивать типоразмер, так как эти изделия умеют вращаться слишком медленно поэтому не будут излишними на малых площадях. Для линейки Grundfos Alpha рекомендованы производителем следующие параметры выбора насоса.

    Вычисление параметров труб

    Существуют таблицы по подбору диаметра труб, в зависимости от подключенной тепловой мощности. В таблице приведены количество тепловой энергии в ваттах, (под ним количество теплоносителя кг/мин), при условии:
    — на подаче +80 град, на обратке +60 град, воздух +20 град.

    Понятно, что через металлопластиковую трубу диаметром 12 мм (наружный 16 мм) при рекомендуемой скорости в 0,5 м/сек пройдет примерно 4,5 кВт. Т.е. мы можем подключить этим диаметром до 3 радиаторов, во всяком случае отводы на один радиатор будем делать только этим диаметром.

    Далее трубой 16 мм (20 мм наружный), при той же скорости можем подключить радиаторы до 7,2 кВт – до 5 радиаторов без проблем…

    20 мм (25 мм наружный) – почти 13 кВт – магистраль от котла для небольшого дома – или этаж до 150 м кв.

    Следующий диаметр 26 мм (32 металлопластик наружный) – более 20 кВт применяется уже редко в главных магистралях. Устанавливают меньший диаметр, так как это участки трубопровода обычно короткие, скорость можно увеличивать, вплоть до возникновения шума в котельной, игнорируя небольшое повышение общего гидравлического сопротивления системы, как не значительное…

    Выбор полипропиленовых труб

    Полипропиленовые трубы для отопления более толстостенные. И стандартизация по ним идет по наружному диаметру. Минимальный наружный диаметр 20 мм. При этом внутренний у трубы PN25 (армированная стекловолокном, для отопления, макс. +90 град) будет приблизительно 13,2 мм.

    В основном применяются диаметры наружные 20 и 25 мм, что грубо приравнивается по передаваемой мощности к металлопластику 16 и 20 мм (наружный) соответственно.

    Полипропилен 32 м и 40 мм применяются реже на магистралях больших домов или в особых каких-то проектах (самотечное отопление, например).

    • Стандартные наружные диаметры полипропиленовых труб РN25 — 20, 25, 32, 40 мм.
    • Соответствующий внутренний диаметр — 13,2, 16,6, 21,2, 26,6 мм

    Таким образом на основании теплотехнического и гидравлического расчетов мы выбрали диаметры трубопроводов, в данном случае из полипропилена. Ранее мы рассчитали мощность котла для конкретного дома, мощность каждого радиатора в каждой комнате, и подобрали необходимые характеристики насоса твердотопливного котла для всего этого хозяйства, — т.е. создали полный расчет системы отопления дома.

    Расчет количества радиаторов отопления по площади и объему помещения

    При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей.

    Расчет по площади

    Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.

    При использовании данной методики нужно учесть несколько важных моментов:

    • норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
    • для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
    • метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
    • способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.

    Методика расчета по объему помещения

    Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:

    1. Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
    2. В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).

    Корректировка результатов

    Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.

    В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.

    Соотношение площади окон и пола в комнате:

    • 10% – коэффициент 0,8;
    • 20% – 0,9;
    • 30% – 1,0;
    • 40% – 1,1;
    • 50% – 1,2.
    • для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
    • для окна с обычным двухкамерным стеклопакетом – 1,0;
    • для рам с обычным двойным остеклением – 1,27.

    Стены и потолок

    Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.

    Число наружных стен:

    • нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
    • одна наружная стена – 1,1;
    • две – 1,2;
    • три – 1,3.
    • нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
    • высокая степень теплоизоляции – 0,8;
    • низкая – 1,27.

    Учет типа вышерасположенного помещения:

    • отапливаемая квартира – 0,8;
    • отапливаемый чердак – 0,9;
    • холодный чердак – 1,0.

    Высота потолков

    Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:

    • 2,5 метра – коэффициент 0,9;
    • 3,0 метра – 1,1;
    • 3,5 метра – 1,3;
    • 4,0 метра – 1,5;
    • 4,5 метра – 1,7.

    Климатические условия

    Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.

    • -10 °C – 0,7;
    • -15 °C – 0,9;
    • -20 °C – 1,1;
    • -25 °C – 1,3;
    • -35 °C – 1,5.

    Расчет количества секций радиаторов

    После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.

    Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:

    • для чугунных батарей примерная мощность одной секции составляет 160 Вт;
    • для биметаллических – 180 Вт;
    • для алюминиевых – 200 Вт.

    Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.

    Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.

    Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.

    Зависимость от температурного режима системы отопления

    Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.

    Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.

    1. Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
    2. Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
    3. Низкотемпературный: 55/45/20, тепловой напор – 30 °С.

    Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.

    Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.

    OtoplenieCalc.ru — онлайн калькуляторы расчета отопления

    Калькуляторы отопления онлайн

    Наш калькулятор поможет вам быстро и максимально точно рассчитать мощность отопительных приборов для дома на основе нескольких параметров, подсчитать количество секций в радиаторах и узнать о расходах на отопление.

    Правильный расчёт отопительной системы – важнейший этап на стадии строительства дома. От того, насколько правильно вы подберете котел и количество радиаторов зависит эффективность отопления и расходы на него. Ведь если, например, установить котел меньшей мощности, чем нужно, или недостаточное количество радиаторов, то в холодное время года вам придется пользоваться дополнительными источниками тепла – а это значит, что затраты на обогрев помещения вырастут в разы.

    Чтобы облегчить вам расчет системы отопления, мы создали простые, удобные и максимально точные калькуляторы, которые позволят не допустить критичных ошибок при расчетах.

    Бесплатные онлайн калькуляторы расчета отопления

    Расчет мощности котла и теплопотерь

    Просто введите и выберите готовые значения и нажмите на кнопку “Рассчитать”. Вы получите нужные вам данные: мощность котла и теплопотери дома

    Расчет количества секций радиаторов отопления

    Калькулятор позволяет правильно рассчитать количество секций в радиаторах отопления для максимальной эффективности.

    Посчитать расходы и сравнить

    После расчета вы сможете узнать, сколько вы тратите на отопление и сравнить затраты с тем или иным источником тепла.

    Проектирование отопления дома

    Оборудовать котельную

    Котельная должна быть оборудована в соответствии с требованиями, так что к этому вопросу нужно подойти серьезно.

    Рассчитать мощность и типа котла

    От мощности котла зависит эффективность всей отопительной системы. Если вы выбрали слабый котел, то готовьтесь к дополнительным тратам.

    Рассчитать количество радиаторов и секций в них

    Это тоже важный параметр, недостаточное количество радиаторов снижает эффективность отопительной системы.

    Выбрать схему подключения радиаторов

    Система подключения радиаторов отопления может быть однотрубной, двухтрубной, лучевой или выполнена по схеме Тихельмана

    Монтаж котла, обвязка, подключение радиаторов

    На этом этапе следует тщательно продумать схему обвязки котла, подключения радиаторов, циркуляционного насоса, расширительного бака и других элементов

    Заполнение системы теплоносителем и запуск

    На последнем шаге остается только наполнить систему водой или антифризом, а потом запустить и протестировать систему отопления.

    Для обеспечения комфортного проживания в холодное время года еще на этапе проецирования частного дома нужно позаботиться о расчете и монтаже отопления. Правильно произведенные тепловые калькуляции позволят определить оптимальную и экономически выгодную отопительную систему. Любая погрешность может привести к тому, что вы будете мерзнуть либо в здание будет жарко и душно.

    Самостоятельные расчеты не окажутся проблемой для людей с техническим образованием. Однако не каждый обладает физико-математическими навыками, поэтому хорошим путеводителем в подсчетах будет онлайн калькулятор. Он поможет выявить тепловые потери дома и вычислить мощность, которой должен обладать котел. Так же определит количество необходимых радиаторов и сколько должно быть в нем секций. Сделает за вас расчет затрат на отопление, что пригодится для выбора подходящего источника тепла. Соберите нужные данные для вычисления.

    Определите тепловые потери. Для этого, необходимо знать, из какого материала построены внешние стены и напольные покрытия, чем утеплены и их толщину. Измерьте площадь дома, окон и наружных дверей. Высокая интенсивность потери тепла у вентиляции и канализации. Их тоже нужно учитывать в расчетах.

    Климатические условия местонахождения дома играют важную роль в выборе отопительной системы. Узнайте среднегодовую и минимальную температуру в вашем регионе, а также среднюю скорость ветра.

    Расчет мощности котла и теплопотерь.

    Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:

    1. Разница температуры снаружи и внутри здания (ΔT);
    2. Теплозащитные свойства объектов дома (R);

    Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов

    Таблица 1. Теплозащитные свойства стен

    толщина в 3 кирпича (79 сантиметров)

    толщина в 2.5 кирпича (67 сантиметров)

    толщина в 2 кирпича (54 сантиметров)

    Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)

    Таблица 2. Тепловые расходы окон

    Тип окна RT q. Вт/ Q. Вт
    Обычное окно с двойными рамами 0.37 135 216
    Стеклопакет (толщина стекла 4 мм)

    RT — сопротивление теплопередачи;

    1. Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;

    четные цифры указывают на воздушное пространство в мм;

    Ar — зазор в стеклопакете заполнен аргоном;

    К – окно имеет наружное тепловое покрытие.

    Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:

    Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае

    R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2

    Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:

    • Электрические котлы;
    • Газовые котлы
    • Нагреватели на твердом и жидком топливе
    • Гибридные (электрические и на твердом топливе)

    Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:

    1. Расчет мощности по площади помещений.

    По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.

    Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)

    1. Расчет мощности по объему помещений.

    Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:

    • На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
    • На 0.9, если ваша квартира на первом или последнем этаже;
    • Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.

    Расчёт радиаторов отопления на квадратный метр

    Несмотря на разнообразие рынка отопительных систем, радиаторы всегда остаются в тренде. Однако владельцы отопительного оборудования часто допускают ошибки в его эксплуатации. Самая распространенная является несоответствие теплоотдачи батареи с площадью помещения. Самым простым способом расчёта батареи является 100 Вт на 1 м2. Зная площадь комнаты, умножьте ее на 100.

    Если радиатор многосекционный, то воспользуйтесь формулой: N = Q/ Qус, где N это количества секции, а Qус – мощность каждой секции по отдельности. В случае, когда высота потолков превышает 2,7 м., воспользуйтесь расчетом по объему. Для более точной информации теплоотдачи можно воспользоваться коэффициентами:

    • Количество внешних стен (Кф. 1.1, 1.2);
    • Направленность комнаты на стороны света (Кф. 1.1, если на север и восток);
    • Коэффициент утепления стен (0.85, 1, 1.27);
    • Климатические условия (-35° — Кф. 1.5, -25°- Кф. 1.3, -15°- Кф. 1.1, -10° — Кф 0.7);
    • Высота потолков (Кф. От 1 до 1.2);
    • Этаж квартиры (Кф. От 1 до 0.8);

    Тип оконной рамы (из дерева -1.27, однослойный стеклопакет – 1, двойной стеклопакет – 0.85);

    Q = S × 100 ×… (значение коэффициента)

    Расчет затрат на отопление

    Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:

    1. Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
    2. Установка обогревательной системы.
    3. Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
    4. Поддержка оборудования в рабочем состояние.

    При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.

    Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества

    Читайте также:
    Побелка потолка: как правильно побелить потолочную поверхность, побелка на старую штукатурку своими руками
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: