Особенности и подключение модульных люминесцентных светильников

Схемы подключения люминесцентных ламп

С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.

Хорошая освещенность и линейные размеры — преимущества дневного света

Принцип работы люминесцентного светильника

В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.

Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.

Принципиальное устройство люминесцентной лампы дневного света

Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.
Читайте также:
Регулировка пластиковых окон на зиму: подготовка, настройка своими руками

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

Схема подключения люминесцентных ламп с дросселем: пошаговая инструкция

Люминесцентные лампы подключаются в соответствии с несколько более сложной схемой по сравнению со своими ближайшими «родственниками» — лампами накаливания. Для зажигания ламп люминесцентного типа, в цепь должны быть включены пусковые устройства, от качества которых напрямую зависит срок эксплуатации светильников.

Люминесцентные лампы

Чтобы разобраться в особенностях схем, надо в первую очередь изучить устройство и механизм действия подобных приборов.

Кратко об особенностях работы ламп

Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно экономить на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.

Люминесцентные лампы

Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.

Сравнение ламп

Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Как подключить люминесцентную лампу

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и электронного типа.

Цены на люминесцентные лампы

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Дроссель для люминесцентных ламп Стартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Подключение лампы с электромагнитным балластом

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Схема подключения одной люминесцентной лампы через стартер

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Второй шаг

На оставшиеся свободными контакты подключаем дроссель.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Подключение через современный электронный балласт

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

Цены на электронные балласты для люминесцентных ламп

Порядок подключения

Все необходимые коннекторы и провода обычно идут в комплекте с электронным балластом. Со схемой подключения вы можете ознакомиться на представленном изображении. Также подходящие схемы приводятся в инструкциях к балластам и непосредственно осветительным приборам.

В такой схеме лампа включается в 3 основные стадии, а именно:

  • электроды прогреваются, благодаря чему обеспечивается более бережный и плавный пуск и сохраняется ресурс прибора;
  • происходит создание мощного импульса, требующегося для поджига;
  • значение рабочего напряжение стабилизируется, после чего напряжение подается на светильник.

Современные схемы подсоединения ламп исключают необходимость применения стартера. Благодаря этому риск перегорания балласта в случае запуска без установленной лампы исключается.

Схема для последовательного подключения двух ламп

Отдельного внимания заслуживает схема подсоединения сразу двух люминесцентных лампочек к одному балласту. Приборы подключаются последовательно. Для выполнения работы нужно подготовить:

  • индукционный дроссель;
  • стартеры в количестве двух штук;
  • непосредственно люминесцентные лампы.

Схема подключения двух люминесцентных ламп через стартер

Последовательность подключения

Первый шаг. К каждой лампочке подсоединяется стартер. Соединение параллельное. В рассматриваемом примере стартер подключаем на штыревой выход с обоих торцов осветительного прибора.

Второй шаг. Свободные контакты подсоединяются к электросети. При этом соединение выполняется последовательно, посредством дросселя.

Третий шаг. Параллельно к контактам осветительного прибора подсоединяются конденсаторы. Они будут уменьшать выраженность помех в электросети и компенсировать возникающую реактивную мощность.

Важный момент! В обычных бытовых выключателях, в особенности это характерно для бюджетных моделей, контакты могут залипать под воздействием повышенных стартовых токов. Ввиду этого для использования в комплексе с люминесцентными осветительными приборами рекомендуется использовать только специально предназначенные для этого высококачественные выключатели.

Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов.

Взрывозащищенные люминесцентные светильники серии LN

Видео – Схема подключения люминесцентных ламп

Обзор работоспособных схем подключения люминесцентных ламп

Люминесцентная лампа — источник света, где свечение достигается за счет создания электрического разряда в среде инертного газа и ртутных паров. В результате реакции возникает незаметное глазу ультрафиолетовое свечение, воздействующее на слой люминофора, имеющийся на внутренней поверхности стеклянной колбы. Стандартная схема подключения люминесцентной лампы — прибор с электромагнитным балансом (ЭмПРА).

Устройство люминесцентных ламп

В большинстве лампочек колба выполнена в форме цилиндра. Встречаются более сложные геометрические формы. По торцам лампы имеются электроды, напоминающие по конструкции спирали лампочек накаливания. Электроды изготовлены из вольфрама и припаяны к находящимся с наружной стороны штырькам. На эти штырьки подается напряжение.

Внутри люминесцентной лампы создана газовая среда, которая характеризуется отрицательным сопротивлением, что проявляется при уменьшении напряжении между находящимися напротив друг друга электродами.

В схеме включения лампы используется дроссель (балластник). Его задача — образовать значительный импульс напряжения, за счет которого включится лампочка. В комплект входит стартер, представляющий лампу тлеющего разряда с парой электродов в инертной газовой среде. Один из электродов представляет собой биметаллическую пластину. В выключенном состоянии электроды люминесцентной лампочки разомкнуты.

На рисунке внизу изображена схема работы люминесцентной лампы.

Как работает люминесцентная лампа

Принципы работы люминесцентных источников света основываются на следующих положениях:

  1. На схему направляется напряжение. Однако вначале ток не попадает на лампочку из-за высокого напряжения среды. Ток движется по спиралям диодов, постепенно нагревая их. Ток подается на стартер, где напряжения достаточно для появления тлеющего разряда.
  2. В результате нагрева контактов пускателя током происходит замыкание биметаллической пластины. Металл берет на себя функции проводника, разряд завершается.
  3. Температура в биметаллическом проводнике падает, происходит размыкание контакта в сети. Дроссель создает импульс высокого напряжения в результате самоиндукции. Вследствие этого зажигается люминесцентная лампочка.
  4. Через осветительный прибор идет ток, который уменьшается вдвое, так как напряжение на дросселе сокращается. Его не хватает для еще одного запуска стартера, контакты которого находятся в разомкнутом состоянии при включенной лампочке.

Чтобы составить схему включения двух лампочек, установленных в одном осветительном приборе, необходим общий дроссель. Лампы подключаются последовательно, однако на каждом источнике света имеется параллельный стартер.

Варианты подключений

Рассмотрим разные варианты подключения люминесцентной лампы.

Подключение с использованием электромагнитного баланса (ЭмПРА)

Наиболее распространенный тип подключения люминесцентного источника света — схема со стартером, где используется ЭмПРА. Принцип действия схемы базируется на том, что в результате подключения питания в стартере возникает разряд и происходит замыкание биметаллических электродов.

Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В результате рабочий ток в лампочке увеличивается почти в три раза, происходит стремительный нагрев электродов, а после потери температуры проводниками возникает самоиндукция и зажигание лампы.

  1. В сравнении с другими способами это довольно затратный вариант с точки зрения расхода электроэнергии.
  2. Пуск занимает не меньше 1 – 3 секунд (в зависимости от степени износа источника света).
  3. Невозможность работы при низкой температуре воздуха (например, в условиях неотапливаемого подвального или гаражного помещения).
  4. Имеется стробоскопический эффект мигания лампочки. Этот фактор отрицательно действует на человеческое зрение. Такое освещение нельзя применять в производственных целях, потому что быстро движущиеся предметы (например, заготовка в токарном станке) кажутся неподвижными.
  5. Неприятное гудение дроссельных пластинок. По мере износа устройства звук нарастает.

Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки. Индуктивности дросселя должно хватать на оба источника света. Используются стартеры на 127 Вольт. Для одноламповой схемы они не подходят, там нужны устройства на 220 Вольт.

На картинке внизу показано бездроссельное подключение. Стартер отсутствует. Схема используется в случае перегорания у ламп нитей накала. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от 220-вольтной сети.

Следующая схема используется для лампочек с перегоревшими нитями. Однако отсутствует необходимость в повышающем трансформаторе, благодаря чему конструкция устройства становится проще.

Ниже показан способ использования диодного выпрямительного моста, который нивелирует мерцание лампочки.

На рисунке внизу та же методика, но в более сложном исполнении.

Две трубки и два дросселя

Чтобы подключить лампу дневного света, можно использовать последовательное подключение:

  1. Фаза от проводки направляется на вход дросселя.
  2. От дроссельного выхода фаза идет на контакт источника света (1). Со второго контакта направляется на стартер (1).
  3. Со стартера (1) отходит на вторую контактную пару этой же лампочки (1). Оставшийся контакт стыкуют с нулем (N).

Тем же образом подключают вторую трубку. Вначале дроссель, затем один контакт лампочки (2). Второй контакт группы направляется на второй стартер. Выход стартера объединяется со второй парой контактов источника света (2). Оставшийся контакт следует подсоединить к нулю ввода.

Схема подключения двух ламп от одного дросселя

Схема предусматривает наличие двух стартеров и одного дросселя. Наиболее дорогостоящий элемент схемы — дросселя. Более экономный вариант — двухламповый светильник с дросселем. О том, как реализовать схему, рассказывается в видео.

Электронный балласт

Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.

Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.

Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.

Подключение осуществляется следующим образом:

  1. Первый и второй контакт соединяют с парой ламповых контактов.
  2. Третий и четвертый контакты направляют на оставшуюся пару.
  3. На вход подают электропитание.

Использование умножителей напряжения

Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.

В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.

Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.

Подключение без стартера

Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.

На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.

Последовательное подключение двух лампочек

В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.

Для проведения электромонтажных работ понадобятся такие детали:

  • индукционный дроссель;
  • стартеры (2 единицы);
  • люминесцентные лампочки.

Подключение выполняется в следующем порядке:

  1. Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
  2. Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
  3. К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.

Обратите внимание! В стандартных бытовых переключателях (особенно в недорогих моделях) нередко залипают контакты из-за слишком высоких стартовых токов. В связи с этим для использования в совокупности с люминесцентными лампами рекомендуется приобретать качественные выключатели.

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

  1. Разбираем светильник. Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси. Направление движения указано на держателях в виде стрелочек.
  2. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях.
  3. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность.
  4. Завершающее действие — монтаж рассеивающего плафона.

Проверка работоспособности системы

После подключения люминесцентной лампы следует убедиться в ее работоспособности и в исправности пускорегулирующих устройств. Для проведения испытаний понадобится тестер, с помощью которого проверяют катодные нити накала. Допустимый уровень сопротивления — 10 Ом.

Если тестер определил сопротивление как бесконечное, необязательно выбрасывать лампочку. Данный источник света еще сохраняет функциональность, но использовать его нужно в режиме холодного запуска. В обычном состоянии контакты стартера разомкнуты, а его конденсатор не пропускает постоянный ток. Иными словами, прозвон должен показывать очень высокое сопротивление, которое иной раз достигает сотен Ом.

После прикосновения щупами омметра дроссельных выводов сопротивление постепенно снижается до постоянной величины, присущей обмотке (несколько десятков Ом).

Обратите внимание! О неисправном состоянии дросселя говорит перегорание недавно поставленной лампочки.

Достоверно определить межвитковое замыкание в дроссельной обмотке, используя обычный омметр, не получится. Однако если в приборе есть функция замера индуктивности и данные по ЭмПРА, несоответствие значений укажет на наличие проблемы.

Как правильно подключить люминесцентную лампу

Люминесцентные лампы остаются востребованными приборами освещения несмотря на распространение светодиодных светильников. Это обусловлено их мощностью, эффективностью и отличными показателями цветопередачи. При подключении люминесцентных приборов важно учитывать особенности оборудования.

Устройство люминесцентных ламп

Схема подключения обычной люминесцентной лампы значительно отличается от аналогичной схемы приборов накаливания. Они состоят из основных компонентов:

  • плата управления, регулирующая поступление тока;
  • электроды;
  • стеклянная трубка или колба, покрытая люминофором.

Внутри колбы находится смесь паров ртути и инертных газов, и электроды. Входное напряжение вызывает движение частиц, порождая ультрафиолетовое излучение. Однако оно невидимо человеческому глазу. В видимый свет его переводит люминофор, которым покрывается внутренняя поверхность колбы. Изменение состава люминофора меняет оттенок и цветовую температуру освещения.

Процессами управляют стартер и пускорегулирующий аппарат, стабилизирующие напряжение и обеспечивающие равномерное свечение без пульсаций и мерцаний.

Как подключить лампу

Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.

Подключение с использованием электромагнитного балласта

Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.

Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.

Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:

  • значительный расход электроэнергии;
  • длительный запуск, который может занимать 3 с;
  • схема не способна функционировать в условиях пониженных температур;
  • нежелательное стробоскопическое мигание, негативно влияющее на зрение;
  • дроссельные пластинки по мере износа могут издавать гудение.

Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.

Две трубки и два дросселя

В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.

Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.

От стартера контакт идет к лампе, а свободный полюс – к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.

Схема подключения двух ламп от одного дросселя

Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.

Электронный балласт

Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.

Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.

Поступающий на нагрузку ток выпрямляется через диодный мост. При этом напряжение сглаживается, а конденсаторы гарантируют стабильную подачу электроэнергии.

Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.

Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.

Использование умножителей напряжения

Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.

Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.

Тематическое видео: Подробно про умножитель напряжения

Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость. Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.

Подключение без стартера

Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.

В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.

Последовательное подключение двух лампочек

Метод предполагает работу двух ламп с одним балластом. Для реализации требуется индукционный дроссель и стартеры.

Необходимо к каждой лампе подключить стартер, соблюдая параллельность соединения. Свободные контакты схемы направляются в сеть через дроссель. К контактам подсоединяются конденсаторы, снижающие помехи и стабилизирующие напряжение.

Высокие стартовые токи в схеме нередко вызывают залипание контактов в переключателях, поэтому подбирайте качественные модели, на которые показатели сети не сильно влияют.

Как проверить работоспособность лампы

После подключения проверьте работоспособность схемы тестером. Сопротивление катодных нитей не должно превышать 10 Ом.

Иногда тестер показывает бесконечное сопротивление. Это не значит, что лампу пора выбрасывать. Прибор можно включать холодным запуском. Обычно контакты стартера разомкнуты, а конденсатор не пропускает постоянный ток. Однако после нескольких прикосновений щупами показатель стабилизируется и опустится до нескольких десятков Ом.

Замена лампы

Как и другие источники света, люминесцентные приборы выходят из строя. Единственным выходом будет замена основного элемента.

Процесс замены на примере потолочного светильника Армстронг:

  1. Осторожно разбирается светильник. С учетом указанных на корпусе стрелочек колба поворачивается по оси.
  2. Повернув колбу на 90 градусов, можно опустить ее вниз. Контакты сместятся и выйдут через отверстия.
  3. Новую колбу поместить в паз, следя за попаданием контактов в соответствующие отверстия. Установленную трубку повернуть в противоположную сторону. Фиксация сопровождается щелчком.
  4. Включить осветительный прибор и проверить работоспособность.
  5. Собрать корпус и установить рассеивающий плафон.

Если недавно установленная колба снова перегорела, имеет смысл проверить дроссель. Возможно, именно он подает на прибор слишком большое напряжение.

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Особенности люминесцентных светильников

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Принцип действия

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

  1. При подаче питания ток, проходя через ПРА, проходит через контакты стартера по вольфрамовым спиралям, раскаляя их и далее уходит в сторону нуля
  2. Стартер оснащается парой контактов: подвижным и неподвижным. При поступлении тока подвижный контакт (биметаллический), нагреваясь, изменяет свою форму и соединяется с первым
  3. При этом сила тока тут же значительно увеличивается до предела, ограничиваемого дросселем. Происходит разогревание электродов
  4. Пластина стартера, напротив, начинает остывать и рассоединяет контакты. В этот момент происходит резкий скачек напряжения и пробивка электронами газа. При превращении ртути в пар источник света переходит в рабочий режим
  5. Стартер в процессе уже не участвует – его контакты разомкнуты.

Основные этапы подключения

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

  1. Включение в схему компенсирующего конденсатора позволяет снизить потери энергии и сэкономить ее потребление. В принципе, система будет работать и без него, но с большими затратами электроэнергии
  2. Напряжение должно проходить последовательно по всем точкам, начиная с конденсатора
  3. Далее в систему включается ПРА. Для получения ровного свечения его параметры должны идеально соответствовать мощности лампы
  4. Дроссель подключается к источнику света последовательно
  5. После выхода его из катушки следует подсоединить клеммы стартера
  6. Монтируем к нему второй сетевой контакт

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Монтаж двух ламп

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

  1. Фаза вначале должна подходить ко входу дросселя
  2. От него она должна поступать к первой лампе
  3. Затем направляться к первому стартеру
  4. Далее переходить на вторую контактную пару этого же источника света
  5. Выходящий контакт соединяют с нулем
  6. Точно в такой же последовательности подсоединяют вторую трубу. Первым – ПРА. Затем контакт второго источника света и т.д.

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

Пара ламп и один дроссель

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

  1. Подсоединяем провод от держателя стартера к одному из разъемов источника света
  2. Второй провод (он будет подлиней) должен проходить от второго держателя стартера к другому концу источника света (лампе). Обратите внимание, что гнезд у него с обеих сторон два. Оба провода должны попасть в параллельные (одинаковые) гнезда, расположенные с одной стороны
  3. Берем провод и вставляем его вначале в свободное гнездо первой, а затем второй лампы
  4. Во второе гнездо первой подсоединяем провод с подключенной к нему розеткой
  5. Раздвоенный второй конец этого провода подключаем к дросселю
  6. Осталось подключить к следующему стартеру второй источник света. Подсоединяем провод в свободное отверстие гнезда второй лампы
  7. Последним проводом соединяем противоположную сторону второго источника света к дросселю

Подключение без дросселя

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Подключение ЭПРА

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

  1. Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
  2. Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
  3. Соединяем его проводами с гнездами ламп
  4. Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.

Достоинства и недостатки люминесцентных источников света

Использование ламп для тепличного выращивания растений

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

ВИДЕО: Как подключить люминесцентную лампу

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

Подробно о люминесцентных светильниках

Наиболее экономичными источниками света на сегодняшний день принято считать люминесцентные светильники. Соотношение их основных характеристик (излучаемого потока света и потребления электроэнергии) во много раз выгоднее, чем у ламп накаливания. Это же можно сказать и о сроке службы таких источников света.

Что такое люминесцентные светильники, их устройство и принцип работы

Люминесцентный светильник — наиболее распространенный тип освещения, который встречается в помещениях административного назначения (детские сады, школы, офисы), а также в домашнем быту и промышленных зонах. Его монтаж и последующие растраты на электроэнергию обойдутся недорого. Особенности конструкции позволяют использовать их и для внешнего, и для внутреннего освещения.

Источник света в таких устройствах — люминесцентная лампа. Принцип ее работы заключается в способности паров металла и некоторых газов излучать свет при воздействии на них электрическим полем. Лампы по виду похожи на стеклянные трубки.

Устройство люминесцентного светильника можно представить так: внутри него есть покрытие — люминофор, в трубке присутствует инертный газ с парами ртути. С каждого края ламповой конструкции находятся вольфрамовые спирали со слоем бария оксида, выполняющие функции катодов. Они соединены с двумя штырьками, которые и связывают лампу с наружным источником питания. Это типичная схема таких осветительных приборов.

Есть еще и люминесцентные ламповые конструкции, которые предназначены для светильников небольших размеров. Они имеют внешний вид несколько иной, при этом труба может быть изогнута в спираль, кольцо или другую форму.

Вышеперечисленные конструкции имеют свои положительные и отрицательные стороны. К плюсам таких осветительных приборов относятся:

  • способность повышенной светоотдачи: прибор в 20 Вт равен по мощности лампе накаливания в 100 Вт;
  • КПД выше, чем у осветительных приборов с лампами накаливания;
  • большой выбор оттенков излучаемого света;
  • более длительный срок эксплуатации по сравнению с лампами накаливания;
  • излучаемый свет не точечный, а рассеянный.

Если же говорить о недостатках таких осветительных приборов, то к ним можно причислить:

  • требуется специальная утилизация из-за содержания паров ртути;
  • излучение от таких светильников имеет неравномерный спектр, что является неприятным для глаз;
  • некоторые светильники в процессе своей работы могут издавать неприятные шумы.

Светильник с люминесцентными лампами нецелесообразно применять в конструкции с автоматическим включением (при установке датчиков движения), так как слишком частое срабатывание осветительных приборов приводит к быстрому выходу их из строя, сокращая срок эксплуатации.

Разновидности люминесцентных светильников

Трудно вычислить, что лежит в основе активного развития электротехнических устройств — ажиотажный потребительский спрос или инженерные разработки. Но неоспоримым считается тот факт, что сегодня на рынке можно найти варианты осветительных приборов разнообразных конструкций. Так, появились устройства, которые внешне схожи с люминесцентными, но лампочка заменена на светодиодные элементы.

Но, несмотря на все новшества, этот тип светильников занимает не последнее место и по спросу, и по количеству разновидностей устройств.

Условно их можно разделить на две большие группы: потолочные и мебельные. Каждая из них имеет достаточно большое количество подвидов.

Потолочные осветительные люминесцентные приборы

Потолочные люминесцентные осветительные приборы — наиболее часто встречаемые светильники. Основная функция которых — организация общего освещения.

В зависимости от места расположения их условно разделяют на такие подгруппы:

  • потолочные офисные;
  • потолочные промышленные.

Существует множество видов светильников люминесцентных потолочных , их можно разделить на такие типы:

  • четырехламповый (4х18, 4х36);
  • двухламповый (2х23, 2х58).

Светильники для промышленных зон

Для этих целей применяют такие же по типу лампы, но их отличительная черта — отсутствие декоративных излишеств при использовании таких осветительных приборов для промышленных зон. Они характеризуются строгой формой, но при этом дают хороший световой поток. Промышленные люминесцентные устройства дают хороший источник света для больших складских, торговых и производственных помещений. К тому же к таким светильникам выдвигают и более высокие требования по сравнению с бытовыми или офисными конструкциями.

Так, люминесцентные промышленные источники света должны быть более безопасными (светильник взрывозащищенный), сравнительно низкой стоимости, легки в установке, обеспечивать длительный срок эксплуатации при не всегда благоприятных обстоятельствах. Если условия труда предполагают соблюдение повышенной безопасности, то идеальный вариант — взрывозащищенные светильники с люминесцентными лампами. Для удобства работы при таком освещении выбирают приборы, которые не дают бликов. Промышленный светильник должен излучать ровный свет.

Светильники для офисов и бытовые

Офисные и бытовые варианты светильников могут быть классифицированы в зависимости от количества ламп в них. Так, встречаются потолочные двухламповые (ЛПО 2х36 и 2х58) или четырехламповые световые приборы. Их выбор зависит от площади территории, которую необходимо осветить. В зависимости от варианта установки они подразделяются на встраиваемые и накладные подвиды.

Встраиваемые осветительные приборы

Встраиваемые модели служат для освещения помещений офисного или бытового назначения. Конструкция таких приборов позволяет произвести монтаж в подвесных, реечных и натяжных потолочных конструкциях. Встраиваемые осветительные приборы укладываются в каркасы при монтаже потолков.

Наиболее популярными и хорошо зарекомендовавшими себя из всех видов таких встроенных конструкций являются люминесцентные светильники для потолков Армстронг. Они производятся десятками производителей и различаются своими параметрами. Подбор таких осветительных приборов производят посредством подбора параметров, исходя из размеров секции. Так, если потолочный блок Армстронг 600х600, то и светильник люминесцентный подбирают с такими же размерами. В результате потолочный фон получается ровным.

Часто используют модели люминисцентные 2х36 (на 2 лампочки) как один из дешевых видов освещения помещений, где требуется защита осветительного прибора. Светильник люминесцентный встраиваемый 2х36 встречается в спортивных залах, школах, детских садах.

Накладные осветительные приборы

Накладные светильники люминесцентные (4х18) монтируются на твердую поверхность. Это может быть как стена помещения, так и потолок (оштукатуренная железобетонная плита или гипсокартон). Такой накладной конструкцией не пользуются на натяжных потолках. Их выбор достаточно широк. Большой популярностью также пользуются источники света люминесцентные 2х36. Установка происходит при помощи саморезов или дюбелей. Идеальным местом для светильников, которые имеют накладной тип монтажа, считается современный кухонный интерьер, школьные учреждения и офисные помещения.

Одним из видов накладной осветительной конструкции является упомянутая выше модель 4х18 ЛПО-71. Состоит она из цельной стальной основы. Корпус светильника покрыт порошковой краской белого оттенка или цвета металлик. На этой основе установлены 4 люминесцентные лампочки по 18 Вт, поэтому имеет тип 4х18 .

Модель 4х18 имеет также накладной решетчатый материал, который прикрепляется к корпусу с помощью скрытых пружин.

Особенности взрывозащищенных люминесцентных осветительных приборов

Взрывозащищенный люминесцентный осветительный прибор используется в помещениях с повышенной опасностью. Корпус таких приборов сделан из сверхпрочного сплава алюминия, который противостоит коррозии, перепадам температур, попаданию влаги. К тому же все детали во взрывозащищенных светильниках с люминесцентными лампами имеют плотное соединение с герметиком, что обеспечивает изоляцию контактов от пыли и других возможных загрязнений.

Монтаж люминесцентных осветительных приборов

Монтаж люминесцентных светильников производится в зависимости от их конструкции. Приспособления для установки светильников прикрепляются к потолочным конструкциям, на стены (настенный вариант), колонны при помощи дюбелей и закладных частей. В этот же время при монтировании крепежных деталей устанавливают и потолочную розетку, которая служит для соединения проводов осветительного прибора с сетью электропитания и закрывает собой щель их выхода.

Схема подключения лампы также имеет значение. Изначально были только модели с дросселями и стартерами. Они представляют собой два устройства, имеющие отдельные гнезда. Конденсаторы выполняют разную функцию. Первый, включенный параллельно, служит для стабилизации напряжения. Второй, расположенный в стартере, выполняет функцию увеличения времени стартового импульса. Эта схема подключения называется еще электромагнитным балластом.

На каждом люминесцентном осветительном приборе с обратной стороны нарисована схема. Она несет в себе полную информацию о том, сколько ламп подключается, их мощность и количество, технические характеристики устройства.

Заметим, что осветительный прибор, который использовался для люминесцентных ламп, может быть с легкостью переоборудован под светодиодный. Но перед заменой следует изъять из схемы пускорегулирующий аппарат. Напряжение должно идти на светодиодные выводы напрямую. В этом и вся разница.

Перед тем как подключить осветительный люминесцентный прибор, убедитесь, что концы электросети изолированы.

Наилучшим способом размещения люминесцентных светильников считается их подвеска на магистральные осветительные коробки (КЛ-1 или КЛ-2). В комплекте с коробками поставляются и все необходимые детали для выполнения качественного монтажа к балкам, перекрытию, стенам и т. д.

Возможные поломки

Рассмотрим основные возможные неисправности люминесцентных светильников и пути их устранения:

  1. Срабатывает защита. Причиной этому может быть замыкание в электросети за автоматом или же неисправность в работе конденсатора на входе. Такое часто бывает при попытке замены лампочки на светодиодные элементы. Помочь решить проблему можно путем замены конденсатора. В обязательном порядке нужно проверить контакты стартера и патронов. Осуществляется замена люминесцентных ламп.
  2. Не зажигается. Это указывает, что в патроне нет совсем либо очень слабое напряжение. Следует проверить показатель с помощью индикатора или тестера. Если светильник не зажигается, а на концах трубки есть свечение, то это свидетельствует о неисправности стартера, который нужно заменить. Если же свечения нет, причинами могут быть поломки дросселя, того же стартера, испорченность самой лампочки. Если свечение замечено только в одном конце, то это явный признак ошибки, проверки требует схема подключения.
  3. Постоянное мигание. Такой вид неполадки свидетельствует о поломке стартера или сниженном напряжении в сети электросистемы.
  4. Постоянное самопроизвольное зажигание и погасание лампы говорит о необходимости ее замены.

Как проверить люминесцентный светильник

Исправность люминесцентных осветительных приборов проверяют по целостности и работе основных элементов, которые обеспечивают подачу тока:

  • дроссель (при нормальной работе не должен издавать посторонних звуков);
  • стартер (его работу проверяют последовательным подключением к лампе накаливания и розетке);
  • емкость конденсатора.

Все диагностические мероприятия проводятся в пассивном состоянии светильника, то есть при полном отключении от источника питания. Использовать для проверки рекомендовано мультиметр или омметр. Выньте стартер из патрона, соедините контакты. Подсоедините два щупа прибора к выводным отсоединенным проводам светильника. Прибор покажет значение общего сопротивления светильника.

Видео

Как правильно подключать люминесцентную лампу

Люминисце́нтный светильник был изобретен в 1930-е годы, как источник света, получил известность и распространение с конца 1950-х.

Его преимущества неоспоримы:

  • Долговечность.
  • Ремонтопригодност.
  • Экономичность.
  • Теплый, холодный и цветной оттенок свечения.

Длительный срок службы обеспечивает правильно спроектированное разработчиками устройство пуска и регулировки работы.

Люминисцентный светильник промышленного производства

ЛДС (ла́мпа дневного света) намного экономичнее, чем привычная лампочка накаливания, впрочем, аналогичное по мощности светодиодное устройство превосходит по этому показателю люминесцентное.

С течением времени светильник перестает запускаться, мигает, «гудит», одним словом, не выходит в нормальный режим. Нахождение и работа в помещении становятся опасными для зрения человека.

Для исправления ситуации пробуют включить заведомо исправную ЛДС.

Если простая замена не дала положительных результатов, человек, не знающий как устроен люминесце́нтный светильник, заходит в тупик: «Что делать дальше?» Какие запчасти покупать рассмотрим в статье.

Кратко об особенностях работы лампы

ЛДС относится к газоразрядным источникам света низкого внутреннего давления.

Принцип работы заключается в следующем: герметичный стеклянный корпус устройства заполнен инертным газом и парами ртути, давление которых невелико. Внутренние стенки колбы, покрыты люминофором. Под воздействием электрического разряда, возникающего между электродами, ртутный состав газа начинает светиться, генерируя невидимое глазу ультрафиолетовое излучение. Оно, оказывая действие на люминофор, вызывает свечение в видимом диапазоне. Меняя активный состав люминофора, получают холодный или теплый белый и цветной свет.

Принцип работы ЛДС

Подключение с применением электромагнитного балласта или ЭПРА

Особенности строения не позволяют подключить ЛДС непосредственно в сеть 220 В – работа от такого уровня напряжения невозможна. Для запуска требуется напряжение не ниже 600В.

С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.

  • розжиг;
  • свечение.

Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.

Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов. Накаливание помогает легче запустить разряд, нить при этом меньше перегревается и дольше служит.

После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.

Подключение с применением ЭПРА схема подключения

В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):

  • электромагнитный пускорегулирующий аппарат ЭмПРА;
  • электронный пускорегулирующий аппарат – ЭПРА.

Схемы предусматривают различное подключение, оно представлено ниже.

Схема с ЭмПРА

В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:

  • дроссель;
  • стартер;
  • компенсирующий конденсатор;
  • люминесцентная лампа.

схема включения

В момент подачи питания через цепь: дроссель – электроды ЛДС, на контактах стартера появляется напряжения.

Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в цепи светильника создается замкнутый контур: контакт 220 В – дроссель – электроды стартера – электроды лампы – контакт 220 В.

Нити электродов, разогреваясь, испускают электроны, которые создают тлеющий разряд. Часть тока начинает течь по цепи: 220В – дроссель – 1-й электрод – 2-й электрод – 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По законам физики в этот момент возникает ЭДС самоиндукции на контактах дросселя, что приводит к возникновению высоковольтного импульса на электродах. Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.

В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.

Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, снижая до 30 % коэффициент полезного действия светильника.

Внимание! С целью уменьшения потерь энергии в схему включают компенсирующий конденсатор, без него светильник будет работать, но электропотребление увеличится.

Схема с ЭПРА

Внимание! В рознице ЭПРА часто встречаются под наименованием электронный балласт. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент.

Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп, мощностью 36 ватт каждая.

В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предусмотрено предварительное нагревание электродов, что увеличивает срок службы лампы.

Вид ЭПРА

На рисунке показан внешний вид ЭПРА для различных по мощности устройств.

Размеры позволяют разместить ЭПРА даже в цоколе Е27.

ЭПРА в цоколе энергосберегающей лампы

Компактные ЭСЛ – один из видов люминесцентных могут иметь цоколь g23.

Настольная лампа с цоколем G23

Функциональная схема ЭПРА

На рисунке представлена упрощенная функциональная схема ЭПРА.

Схема для последовательного подключения двух ламп

Существуют светильники, конструктивно предусматривающие подключение двух ламп.

В случае замены деталей сборка осуществляется по схемам, различным для ЭмПРА и ЭПРА.

Внимание! Принципиальные схемы ПРА рассчитаны на работу с определенной мощностью нагрузки. Этот показатель всегда имеется в паспортах изделий. Если подсоединить лампы большего номинала, дроссель или балласт могут перегореть.

Если на корпусе прибора есть надпись 2Х18 – балласт предназначен для подключения двух ламп мощностью по 18 ватт каждая. 1Х36 – такой дроссель или балласт способен включать одну ЛДС мощностью 36 Вт.

В случаях, когда используется дроссель, лампы должны подключаться последовательно.

Запускать их свечение будут два стартера. Подсоединение этих деталей осуществляется параллельно с ЛДС.

Подключение без стартера

Схема ЭПРА в своем составе стартера не имеет изначально.

Кнопка вместо стартера

Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включенный последовательно подпружиненный выключатель – проще говоря, кнопка. Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.

Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания.

Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.

Схема без стартера

На схеме представлен двухполупериодный диодный умножитель напряжения.

Электроды закорачиваются, к ним подключается однопроводная линия. Напряжение будет около 600 В, чего достаточно, чтобы между ними в газовой среде протекал постоянный ток.

Собранный по таким схемам бесстартерный блок питания способен заставлять светиться даже устройства с перегоревшими спиралями электродов.

Видео – Схема подключения люминесцентных ламп

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: