Принцип работы и устройство ламп дневного света

Что такое люминесцентная лампа и как она работает?

Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.

Устройство и принцип работы

Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.

Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.

Рис. 1. Устройство и принцип действия люминесцентной лампы

Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:

  • На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
  • При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
  • Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.

Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.

Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.

Разновидности

Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.

По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:

  • Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
  • Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.

По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.

Рис. 2. Разновидности колбы

По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.

Рис. 3. Разновидности цоколей

По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.

Рис. 4. Цветовая температура

Маркировка

Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.

Отечественная

Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.

Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:

  • Д – дневного спектра;
  • ХБ – холодное белое свечение;
  • Б – белого цвета;
  • ТБ – белый теплых оттенков;
  • ЕБ – белый естественного спектра;
  • УФ – ультрафиолетового спектра;
  • Г – голубого цвета;
  • С – синего оттенка;
  • К – красный спектр излучения;
  • Ж – желтого оттенка
  • З – зеленого цвета.

Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.

В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:

  • А – амальгамного типа;
  • Б – с быстрым пуском;
  • К – кольцевого вида;
  • Р – рефлекторные лампы
  • У – U образные.

Зарубежная

Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.

Тип свечения определяется цифровым кодом с буквенным пояснением на английском:

  • 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
  • 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
  • 765 – голубого оттенка с посредственным уровнем передачи цветов;
  • 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
  • 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
  • 840 – белого оттенка с хорошим уровнем передачи цветов;
  • 865 – дневного спектра с хорошей цветопередачей;
  • 880 – дневной спектр с отличной степенью передачи света;
  • 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
  • 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
  • 954/965 – люминесцентные устройства с непрерывным спектром.
Читайте также:
Панельные радиаторы отопления

Технические характеристики

Важными техническими характеристиками для люминесцентных ламп являются:

  • Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
  • Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
  • Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
  • Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
  • Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
  • Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и G13 штырькового образца и другие.

Особенности подключения к сети

В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.

Электромагнитный балласт

Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.

Рис. 5. Схема подключения с электромагнитным балластом

Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.

Электронный балласт

Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.

Рис. 6. Использование электронного балласта

Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.

Причины выхода из строя

Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.

Наиболее частыми причинами выхода люминесцентных ламп со строя являются:

  • перегорание нити накала – характеризуется полным отсутствием свечения;
  • нарушение целостности контактов – также не дает лампе загореться;
  • разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
  • перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
  • обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
  • замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.

Плюсы и минусы

В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.

К преимуществам люминесцентных устройств следует отнести:

  • Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
  • Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
  • Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
  • Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.

Однако и недостатков у люминесцентных ламп существует немало:

  • Гораздо более высокая стоимость;
  • Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
  • Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
  • Стабильность работы во многом зависит от температуры и влажности окружающей среды;
  • Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
  • В сравнении со светодиодными светильниками, бояться механических повреждений;
  • Не поддаются классическим методам управления яркостью.

Область применения

Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.

В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.

Принцип работы и устройство ламп дневного света

Лампы дневного света – это осветительные приборы, которые позволяют экономить электроэнергию по сравнению с классическими источниками света. Люминесцентные лампы применяются для освещения жилых, рабочих и производственных помещений. Их работа основывается на эффекте люминесценции. Чтобы выбрать подходящую лампочку, нужно знать конструктивные особенности и технические характеристики.

  1. Принцип работы
  2. Разновидности ламп дневного света
  3. Область применения
  4. Технические характеристики
  5. Подключение к сети
  6. ЭмПРА
  7. ЭПРА
  8. Основные неисправности
  9. Маркировка люминесцентных ламп
  10. Утилизация лампочек

Принцип работы

Большая поверхность свечения люминесцентных ламп создает ровный рассеянный свет

Люминесцентная лампа – это газоразрядный источник света. Излучение происходит из-за реакции смеси газов, находящихся в колбе. Раньше подобные приборы практически не использовались в бытовых условиях, так как считалось, что они могут навредить зрению. Но после проведения исследований ученые пришли к выводу, что лучи отлично воспринимаются человеческим глазом. Из чего состоит люминесцентная лампа, зависит от ее предназначения. Смесь паров внутри может быть различной.

Конструктивно устройство представляет собой стеклянную трубчатую колбу, на внутреннюю поверхность которой нанесен люминофор. На торцах расположены электроды. Внутри трубки – пары ртутит и смесь газов.

Принцип работы люминесцентной лампы заключается в следующем:

  • Под действием электрического поля в лампочке возникает газовый разряд.
  • Ток, который проходит через пары, вызывает ультрафиолетовое излучение, из-за чего начинает светиться люминофор.

Преимущества люминесцентных ламп дневного света:

  • высокая световая отдача;
  • экономия электричества;
  • прочность – для изготовления плафонов используются качественные материалы;
  • длительность работы;
  • разнообразие форм и размеров;
  • широкий диапазон цветовых температур;
  • создает теплый естественный свет, близкий к дневному излучению.
  • наличие в составе ламы вредных компонентов (ртуть);
  • сложность утилизации;
  • ограничения по количеству циклов включения и выключения;
  • чувствительность к влажности;
  • полное включение происходит не сразу;
  • может гудеть и мерцать во время работы;
  • зависимость стабильной работы от температуры.

Оптимальной рабочей температурой устройства является +20 градусов. Допустимый диапазон – 55 градусов, но он постоянно расширяется с развитием технологий и использованием электронных балластов.

Устройство люминесцентной лампы

Читайте также:
Планировка садового участка на склоне

Стоимость лампочек дневного света ниже, чем у светодиодов. Но она больше, чем у ламп накаливания или галогенных приборов.

Разновидности ламп дневного света

Разновидности строения ламп дневного света

Классификация люминесцентных ламп может проводиться по мощности, температуре, форме, способу установки, длине. К самым распространенным относятся лампы высокого и низкого давления. Приборы высокого давления используются на улицах и в светильниках большой мощности. Лампочки низкого давления подходят для люстр в жилых и производственных помещениях.

По типу установки источники света классифицируются на следующие группы:

  • подвесные;
  • переносные;
  • потолочные;
  • настенные.

По строению лампы бывают:

  • компактные;
  • кольцевые;
  • U образные;
  • прямые.

Чаще всего для освещения используется кольцевая и прямая короткая или длинная лампа. Также активно применяются приборы, работающие от аккумулятора или батареек.

Область применения

Люминесцентные лампы в школьном классе

Лампы дневного света получили широкое распространение благодаря своим преимуществам. Они используются для освещения в домах и квартирах, офисах, производствах и складах, в уличной подсветке и световой рекламе.

В зависимости от спектра цветопередачи лампы бывают:

  • аналогичные солнечному излучению – используются в подсветке офисов, производственных цехов, административных организациях;
  • с повышенной цветопередачей – подходят для выставок, галерей, музеев, больниц, организаций по продаже красителей, тканей и других художественных приспособлений;
  • с повышенным излучением в красном и синем спектре – используются для подсветки аквариумов, теплиц, в магазинах растений, оранжереях;
  • со смещением в синюю и УФ часть спектра – декорирование аквариумов;
  • свет в УФ спектре – солярии;
  • УФ излучение повышенной мощности – антибактериальные лампы.

До активного использования светодиодов люминесцентные светящиеся лампочки применялись для подсветки жидкокристаллических мониторов. Мощные люминесцентные приборы применяются в уличном освещении трасс, стадионов, площадок.

Технические характеристики

Энергоэффективность различных ламп

К основным техническим характеристикам относятся:

  • Цветопередача. Это одна из главных характеристик источника света. Определяется составом люминофора. Люминесцентные приборы имеют широкую цветовую гамму благодаря множеству различных составов. Самые распространенные для домашнего использования – устройства с цветовой температурой 2700 К, дающие теплый естественный оттенок. В рекламной и архитектурной подсветке используются приборы разных цветов – розовые, голубые.
  • Цоколь. Можно выделить 2 формы цоколя в зависимости от конструкции – штырьковые и патронные. Штырьковые цоколи используются в светильниках, в которые устанавливается U образная колба. Патронные цоколи имеют классический внешний вид с резьбой разного диаметра. Применяются в домашних светильниках.
  • Напряжение. Рабочее питание – 220 В, реже используется последовательное подключение дух ламп, работающее на 127 В.
  • Мощность. Самые распространенные – лампы на 18 В. Есть более мощные источники для прожекторов, достигающие 80 Вт.
  • Срок службы. Может достигать 40000 часов.
  • КПД выше 20%.
  • Физические размеры. Например, лампы Армстронг имеют стандартные размеры под ячейку 600х600 мм.
  • Степень защиты от пыли и влаги. Определяет возможность безопасной работы при определенных климатических условиях.
  • Материал изготовления. Пластик, металл и другие.

При выборе лампы нужно учитывать технические характеристики, а также параметры светильника, в который источник света будет установлен.

Подключение к сети

Газоразрядные источники света не могут подключаться напрямую к электросети. Это связано с тем, что в выключенном состоянии у лампы повышенное сопротивление, поэтому для зажигания нужен импульс высокого напряжения. После появления заряда у лампочки появляется отрицательное дифференциальное сопротивление, что требует включения в цепь дополнительного резистора. В ином случае источник света сломается.

Чтобы решить эти проблемы, применяются балласты. К самым распространенным относятся два вида — электромагнитные балласты ЭмПРА и электронные балласты ЭПРА.

ЭмПРА

Устройства с электромагнитным пускорегулирующим аппаратом представляют собой дроссель, у которого есть набор индуктивных сопротивлений. Он подключается параллельно люминесцентному источнику определенной мощности. С помощью дросселя формируется запускающий импульс и ограничивается электрический ток, проходящий через лампочку. К преимуществам относятся:

  • высокая надежность;
  • простота конструкции;
  • долгий срок службы.
  • длительность запуска составляет 1-3 секунды;
  • требуется большее количество энергии по сравнению с ЭПРА;
  • гудение;
  • мерцание;
  • крупные размеры;
  • не работает при отрицательных температурах.

Для создания резонансного контура параллельно подключается конденсатор с малой емкостью. Это помогает сформировать импульс большой длительности для зажигания лампочки.

Электронный пускорегулирующий аппарат отличается отсутствием мигания лампочки. Он питает источник света высокочастотным напряжением, достигающем 133 кГц. Есть 2 вида ЭПРА по способу запуска:

  • холодный – лампочка светится сразу же после включения, подходит для светильников, которые используются редко;
  • горячий запуск – электроды прогреваются, лампа загорается через 0,5 – 1 сек.
  • быстрый запуск;
  • потребление энергии ниже на 20-25%;
  • меньше материальных затрат на утилизацию;
  • наличие в продаже устройств с диммером.

По сравнению с лампами, использующими электромеханический балласт, для работы ЭПРА не требуется стартер. Балласт может самостоятельно сформировать необходимую последовательность напряжений. Есть разные способы запуска ламп. Обычно применяется подогрев катодов напряжением большей частоты, чем сетевое.

В контуре компоненты выбираются таким образом, чтобы при отсутствии заряда возникал электрический резонанс. Он приводит к повышению напряжения между катодами. Это приводит к более легкому зажиганию лампочки.

Основные неисправности

Неисправности люминесцентных ламп

К основным причинам, по которым люминесцентные лампы дневного света выходят из строя, относятся:

  • Износ вольфрамовой нити. Из вольфрамовой нити, которая покрыта активной массой, делаются электроды. Со временем покрытие разрушается и осыпается, из-за чего нить выходит из строя.
  • Постоянное срабатывание стартера в лампочках с ЭмПРА. Оно напрямую связано с выгоранием электродов. При постоянном срабатывании стартеров светильник начинает мигать, что негативно сказывается на здоровье человека.
  • Неисправность дросселя. Если сломался дроссель, электрический ток в цепи значительно возрастает, из-за чего резко нагреваются электроды. Под действием высоких температур электроды разрушаются, и лампа перестает работать.
  • Некачественная защита в лампах с ЭПРА. В приборах с электронным балластом устанавливается схема автоматического отключения при перегорании лампы. В дешевых устройствах неизвестного производителя защита может быть некачественной или отсутствовать вовсе. Это приводит к повышению напряжения и перегоранию транзисторов балласта.
  • Неправильный выбор конденсатора. Если конденсатор не подходит под мощность лампы, произойдет пробой.
Читайте также:
Настольные лампы с зеленым абажуром: как украсить

Если лампа сломалась, осуществить самостоятельный ремонт сложно. Рекомендуется обратиться к специалисту или приобрести новый прибор.

Маркировка люминесцентных ламп

Отечественная маркировка люминесцентных ламп

Есть 2 типа маркировки люминесцентных ламп – отечественная и зарубежная.

Отечественная маркировка записывается в цифробуквенном виде:

  • Первая буква – Л, обозначает «лампа».
  • Вторая характеризует световой поток (Д – дневной, ХБ – холодный белый, ТБ – теплый белый, ЕБ – естественный белый, Б – белый, УФ – ультрафиолет, К – красный, З – зеленый, Г – голубой, С – синий, Ж – желтый).
  • Третья буква – качество цветопередачи. Бывает Ц – улучшенное качество и ЦЦ – особо высокая цветопередача.
  • Четвертая буква – конструкция. А – амальгамная, К – кольцевая, У – U-образная, Б – быстрого запуска, Р – рефлектнорая.
  • Цифра обозначает мощность лампы в Ватт.

Зарубежная маркировка ламп дневного света

Также естественный белый цвет может маркироваться символами ЛЕ — естественный и ЛХЕ – холодный естественный.

Лампы специального назначения также имеют свою маркировку. Буквами ЛН, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР, ЛУФ маркируются лампы цветного свечения.

В зарубежной маркировке используется трехзначный код и подпись на английском языке. В цифровой форме записывается индекс цветопередачи (первая цифра в формате 1х10 Ra) и цветовая температура (последние 2 цифры). В домах применяются источники с маркировкой 830, 840, 930.

Утилизация лампочек

Вредные вещества, входящие в состав лампы, требуют особой утилизации прибора после выхода из строя. Выбрасывать лампы вместе с бытовым мусором запрещено – это может привести к ухудшению экологической среды.

Чтобы правильно утилизировать приборы, созданы специальные пункты сбора. Они есть в управляющих компаниях района, это прописано по закону. Сдать лампочку можно бесплатно.

Что такое люминесцентная лампа и как она работает?

Люминесцентными называются электрические газоразрядного типа лампы, отличающиеся большим сроком службы. Изделия обеспечивают искусственное освещение в жилых комплексах, офисных и торговых центрах, промышленных объектах. Разработаны варианты устройств с разными оттенками излучения, видом цоколя, формой трубки, функциональностью и т.д.

Устройство и принцип работы ламп

Согласно истории люминесцентной лампы, первое осветительное устройство газоразрядного типа было сконструировано в 1856 г. Г. Гейслером. Конструкция приборов усовершенствовалась. Лампы дневного света в массовое коммерческое использование поступили в конце 30 г. XX в.

Конструкция относится к газоразрядным источникам освещения, сконструирована с использованием трубки из стекла, которая с двух сторон запаяна. Изнутри на поверхности лампы нанесен слой специального вещества (люминофора). Устройство излучает рассеивающий свет после подключения к источнику электропитания. Изнутри колбу наполняют аргоном.

Люминесцентное устройство включает:

  • катоды, защищенные эмиттерным слоем;
  • выводные штыри;
  • концевую панель;
  • трубки для отвода инертного газа;
  • ртуть;
  • стеклянную штампованную ножку, дополненную электровводами и т.д.

Принцип функционирования основывается на возникновении электроразряда между электродами после подсоединения к электросети. После взаимодействия разряда с газами инертными и испарениями ртути возникает излучение ультрафиолета, воздействующее на люминофор, преобразующий энергию в световое излучение. Для корректировки оттенков ртутьсодержащих устройств применяются люминофоры с разными химическими компонентами.

Дуговой разряд в колбе создается оксидным самокалящимся катодом, на который воздействует электричество. Для включения ламп ДРЛ, ЛД катоды разогревают посредством пропускания разряда тока. Устройства с холодным катодом запускаются ионным воздействием в тлеющем разряде высокого напряжения.

Для функционирования люминесцентным приборам требуется дополнительный узел (балласт), обеспечивающий работу дросселем и стартером. Балласт регулирует силу разряда и выпускается 2 видов (электромагнитный и электронный).

Электромагнитный балласт является механическим. Устройство относится к бюджетным вариантам, в работе прибор может издавать шум.

Электронные узлы дороже по стоимости, работают бесшумно, оперативно включают систему, компактны.

Классификация люминесцентных ламп

По показателю спектрального излучения приборы люминесцентного типа подразделяются на 3 категории:

  • стандартные;
  • с усовершенствованной передачей цвета;
  • со специальными функциональными назначениями.

Стандартные приборы снабжаются люминофорами однослойными, позволяющими излучать разные тона белого. Приборы оптимальны для освещения жилых помещений, административных и производственных блоков.

Люминесцентные лампы с усовершенствованной передачей света оснащаются люминофором с 3-5 слоями. Структура позволяет качественно отражать оттенки за счет усиленной световой отдачи (на 12% больше типовых ламп). Модели подходят для витрин магазинов, выставочных залов и т.д.

Люминесцентные лампы специализированного назначения совершенствуются с помощью разных составов в трубке, позволяющих поддерживать заданную частоту спектра. Устройства применяют в больницах, концертных залах и т.д.

Приборы разделяются на модели высокого и низкого давления.

Конструкции с высоким давлением оптимальны для монтажа в уличных лампах и приборах, имеющих большую мощность.

Лампы невысокого давления применяются в квартирах, административных комплексах, производственных помещениях.

По внешнему виду ЛЛ представлены линейным и компактным вариантами.

Линейная конструкция колбы удлиненная, применяется для промышленных помещений, торговых центров, офисов, медучреждений, спортивных организаций, заводских цехов и т.д. Линейная модель представлена разными вариантами диаметров трубки и конфигураций цоколя. Устройства обозначаются кодами. Прибор с диаметром 1,59 см на упаковке отмечается знаком Т5, с размером 2,54 см — Т8 и т.д.

Компактные люминесцентные лампы (КЛЛ) представляют спиралевидную стеклянную трубку и предназначены для установки в квартирах, офисах и т.д. КЛЛ делятся на 2 типа, главное отличие — виды цоколей (стандартный и с основанием в форме штыря).

Традиционный цоколь в форме резьбы отмечается знаком «Е» и кодом с размером диаметра.

Штырьковый вид цоколя отмечается символом «G»; цифровые данные обозначают расстояние между штырями. Этот вил лампы оптимален для установки в настольных лампах, подвесных бра в небольших помещениях.

Люминесцентные лампы различаются мощностью (слабые и сильные). Мощность люминесцентной лампы в Вт может превышать показатель 80 единиц. Устройства с небольшой мощностью представлены изделиями до 15 Вт.

По показателю распределения света устройства могут быть направленного действия (рефлекторные, щелевого типа) либо ненаправленного.

По типу разряда приборы подразделяются на дуговые, устройства свечения либо тлеющего разряда.

Читайте также:
Натяжной потолок с подсветкой: нарядное убранство элемента помещения

Различается сфера применения осветительных устройств (наружные, внутренние, взрывозащищенные, консольные).

Наружные устройства подходят для оформления зданий с внешней стороны, для освещения беседок, оформления двора и т.д. При выборе необходимо учитывать температурные режимы региона.

Внутренние подходят для офисных и жилых зданий. Устройства снабжаются защитой от влажности и воздействия пыли. Детали корпуса соединяются герметичным способом. Конструкция ламп может быть прямой, подвесной, предназначенной для крепления к поверхности потолка.

Приборы взрывозащищенные разработаны для территорий с риском возникновения взрывов (склады, цеха по производству красителей и т.д.).

Приборы консольного типа монтируются с помощью специальных креплений и имеют индивидуальный корпус.

Маркировка

Маркировочное обозначение люминесцентных ламп указано на коробке и содержит данные о фирме, мощности, конструкции цоколя, периоде работы, оттенке свечения и т.д.

Согласно расшифровке индекса первая буква маркировки приборов люминесцентного типа — Л. Последующие буквы указывают на цвет оттенка излучения прибора (дневной, белый, холодный тон белого, ультрафиолетовое излучение и т.д.). Кодовое значение будет включать символы Д, Б, УФ и т.д.

Особенности конструктивного исполнения на маркировках обозначаются соответствующими буквами:

  • u-образные люминесцентные лампы (У);
  • изделия кольцевой формы (К);
  • устройства рефлекторного типа (Р);
  • лампы быстрого запуска (Б).

В устройствах люминесцентного вида на маркировке отображаются и показатели свечения, единицей измерения служит Кельвин (К). Показатель температуры 2700 К по оттенку соответствует излучению лампы накаливания. маркировка 6500 К обозначает холодный белоснежный тон.

Мощность приборов маркируется цифрой и единицей измерения — Вт. Стандартные показатели представлены устройствами от 18 до 80 Вт.

На этикетке также представлено обозначение ламп в соответствии с такими характеристиками, как длина, диаметр и форма колбы.

Диаметр колбы на лампе фиксируется буквой «Т» с кодовым обозначением. Прибор, обозначенный кодом Т8, имеет диаметр 26 мм, Т12 — 38 мм и т.д.

Маркировки приборов по типу цоколя содержат буквы Е, G и цифровой код. Обозначение для миниатюрной формы резьбового цоколя — Е14. Средний резьбовой цоколь имеет код Е27. Цоколь втычного типа для декоративных конструкций и люстр маркируется символом G9. Приборы u-образные обозначаются символом G23, двойные u-образные приборы — G24 и т.д.

Технические характеристики

Техническая информация по люминесцентным приборам включает данные о мощности работы, типе цоколя, сроке службы и т.д.

Показатели срока годности люминесцентных приборов варьируются от 8 до 12 тыс. часов. Характеристики зависят от типа лампы. Устройства Т8 и Т12 работают 9-13 тыс. часов, лампы Т5 — 20 тыс. часов.

Световая эффективность устройств составляет 80 Лм/Вт. Выделение тепла при горении невысокое, ветроустойчивость — средняя, положение горения — горизонтальное. Параметры допустимой температуры окружающей среды для ламп составляют +5…+55°С. Оптимальные характеристики эксплуатации — +5… +25°С. Устройства, имеющие покрытие из амальгамы, используются при +60°С.

Показатели цветовой температуры приборов варьируются в зависимости от модели в пределах от 2000 до 6500 К. КПД светильника составляет 45-75%.

Цветность и состав излучения ламп

Характеристики передачи цвета показывают качество отображения в сравнении с естественным типом освещения. Высокая четкость передачи цвета присутствует в галогенных приборах и обозначается кодом 100.

Различаются оттенки светового излучения приборов, изменяющие цветовые характеристики предметов.

Согласно нормативам ГОСТ 6825-91, люминесцентные устройства имеют следующие типы оттенков излучения:

  • дневной (Д);
  • белоснежный (Б);
  • естественный оттенок белого (Е);
  • белый с теплым тоном (ТБ);
  • белый с холодным тоном (ХБ);
  • ультрафиолетовый (УФ);
  • холодное естественное свечение (ЛХЕ) и т.д.

Добавление знака Ц в указании цветности свидетельствует об использовании состава люминофора с усовершенствованной передачей цвета.

Отдельно обозначаются цвета в осветительных устройствах со специальным назначением. Лампы с ультрафиолетовым излучением фиксируются кодом ЛУФ, приборы рефлекторные синего света — ЛСР и т.д.

Преимущества и недостатки

Люминесцентные устройства имеют преимущества, достоинства и недостатки. Лампы имеют высокий показатель световой отдачи. Люминесцентные приборы в 20 Вт обеспечивают освещение в комнате, которое имеют устройства накаливания и иллюминационные лампы в 100 Вт.

Изделия отличаются высоким коэффициентом полезного действия. Энергосберегающие лампы используются до 20 тыс. часов при обеспечении требований эксплуатации.

Свет у люминесцентных конструкций не направленный, а рассеивающий. В северных регионах рекомендовано применение люминесцентных ламп дневного света в жилых и общественных зданиях.

Преимущество люминесцентных устройств в разнообразии конструктивных решений. Разные формы, цветовые оттенки устройств позволяют реализовывать оригинальные дизайнерские решения в архитектуре общественных и жилых комплексов.

К недостаткам люминесцентных приборов относится содержание в конструкции ртути, в зависимости от размера лампы объем вещества варьируется от 2,3 мг до 1 г. Однако производители разрабатывают конструкции, которые в применении не опасны.

Необходимо учитывать сложность в монтаже схем включения и ограниченную мощность на 1 единицу (150 Вт). Эксплуатация устройств зависит от климатических условий, т.к. при понижении температуры устройства гаснут либо не зажигаются. Световой поток в лампах снижается к концу эксплуатации прибора.

Как выбрать лампу

При выборе лампы важен температурный режим использования прибора, показатель электрического напряжения в сети, размеры ламп, сила светового потока, оттенок излучения. Параметры цоколей люминесцентных ламп должны соответствовать типам светильников, торшеров и т.д.

Различается подбор ламп по типу помещения (прихожие, гостиные, спальни, ванные и т.д.). Для жилых пространств подходят модели с резьбовым цоколем и электронным балластом, т.к. не имеют резкого мерцания и бесшумны.

Для прихожих необходимы мощные светильники с интенсивным, при этом рассеянным освещением. Для настенных бра подойдут приборы компактного типа с теплым оттенком (930) и цветопередачей высокого качества. Над карнизом под потолком можно монтировать ленточные светильники с лампами холодного оттенка (860) и трубчатой конструкцией.

В гостиной люминесцентные устройства используются для бра, которые монтируются для подсветки зон либо декоративных элементов. Цвет подбирается белый, высокого качества (940). Возможен монтаж осветительных устройств по периметру потолка.

В спальни рекомендуется выбирать люминесцентные приборы стандартные с показателем 930-933 либо компактные устройства с похожими качествами.

Освещение в кухонной зоне должно быть многоуровневым (общим и локальным). В качестве потолочных рекомендованы компактные устройства мощностью не меньше 20 Вт, оттенок света должен быть теплым, с показателем не ниже 840. Для обустройства рабочей зоны на кухне оптимальны лампы линейные люминесцентные, не создающие блики на поверхностях.

Читайте также:
Подбор гофры под кабель

Что такое галогенная лампа, где используется, как выбрать галогенную лампу для дома

Что такое цветовая температура светодиодных ламп?

Все типы и виды цоколей для ламп освещения — правила маркировки и в чём отличия

Что измеряется в люменах и какие нормы освещенности на 1 квадратный метр?

Как подключить люминесцентную лампу — схемы с дросселем и балластом

Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока

Что такое и какие бывают люминесцентные лампы дневного света

Что такое люминесцентные лампы

Вся планета давно уже обеспокоена вопросом экономии электроэнергии. Обычные лампы накаливания уже можно признать морально устаревшими. Низкий КПД, а об энергосбережении вопрос можно и не поднимать. При их работе экономии электроэнергии просто не существует. Поэтому одним из вариантом будут газоразрядные излучатели. Они созданы в России под руководством С.И. Вавилова в 1936 году.

Лампы люминесцентные (газоразрядные) — это колба с парой электродов. Им можно придать любую форму. При подаче напряжения между электродами начинается эмиссия электронов (тлеющий разряд), создающая излучение света. Свет этот мы не можем видеть. Спектр в ультрафиолетовом диапазоне. Чтобы мы могли получить видимый свет (длина волны должна быть в пределах видимого нами спектра) внутреннюю поверхность колбы покрывается веществом, которое может излучать видимый свет – люминофором. При разряде люминофор начинает светиться. Герметичная колба заполнена инертным газом и парами ртути. Ее наличие необходимо для тлеющего разряда. Жидкий металл его усиливает. Инертный газ безвреден для человека, так как он не вступает ни в какие химические реакции. Но, ртуть – метал опасный для человека. Поэтому возникают проблемы утилизации и вопросы о том, как избежать ртутного заражения.

Принцип работы и устойство ламп

Показатели спектральной цветопередачи существенно выше, чем у раскаленной вольфрамовой нити. Их свет дает натуральные оттенки, для глаз такое освещение более полезно, а глаза устают меньше.

Условно выделено три типа газоразрядных источников света – низкого (не более 0,01 МПа), высокого (0,1 МПа до 1 МПа) и сверхвысокого давления (более 1МПа). Они имеют значительные различия в конструкции.

При подаче напряжения электроды (катоды) разогреваются, между ними возникает тлеющий разряд, который вызывает свечение люминофорного покрытия.

Для создание ультрафиолетового излучения применяется газоразрядные источники . Их отличие состоит лишь в том, что применяется кварцевое стекло для изготовления колбы. Люминофорное покрытие отсутствует.

Обычное стекло его не пропускает. Такие приборы применяются часто в соляриях и для обеззараживания помещений.

Как подключить люминесцентную лампу

В традиционной схеме всего три элемента:

  1. Сам люминесцентный источник света,
  2. Стартер,
  3. Дроссель.

Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.

Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.

Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.

Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.

Люминесцентные лампы (ЛЛ)

Мощность лампы, Вт

Параллельно включенный конденсатор 250 В, мкФ

Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.

Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.

Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.

Собрать готовый светильник с ним очень просто.

На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.

Достоинства электронного пуско-регулирующего аппарата:

  • Простота подключения.
  • Повышает срок эксплуатации лампы.
  • Снижает время включения лампы.
  • Отсутствует мерцание при запуске.
  • Долговечность.

Подробнее о ЭПРА вы можите прочитать — тут

Осветители на лампах высокого давления имеют такую схему.

Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.

Как проверить люминесцентную лампу

Неисправности могут визуально проявляться таким образом.

  • Лампа не зажигается совсем.
  • Наблюдается мерцание при работе.
  • Мерцание перед выходом на рабочий режим.
  • Гудение.
  • Мерцание при горении.

Во время эксплуатации газоразрядные лампы могу потерять работоспособность. При сборке осветительного прибора на основе люминесцентных ламп иногда источник света желательно проверить до установки.

Первоначально требуется провести осмотр на наличие повреждений. Если колба имеет повреждения, то использовать такую лампу нельзя. То же самое касается и сеточки трещин. Такая колба во время работы однозначно разрушится, а ртуть может привести к заражению помещения.

Читайте также:
Ремонтируем сломавшиеся замки входной двери

Вторым моментом следует осмотреть колбу в районе расположения электродов, там не должно быть потемнений на внутренней стороне.

Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это — щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.

Если на контактах электродной нити, либо по краям самой газоразрядной лампы видно оранжевое свечение, при этом освещение не включается, то это говорит о разгерметизации колбы, внутри уже присутствует воздух.

Довольно часто причина отсутствия освещения банальна: отсутствие контакта. Дело в том, что контактные пластины и контактные штырьки для подключения электродов окисляются. Иногда они могут просто быть ослаблены. Восстанавливается это достаточно быстро, их следует почистить при помощи мелкозернистой наждачки, либо жидкости на основе спирта. Отлично подходит для этих целей изопропиловый спирт (он же изопропанол). Также не произойдет розжига при низких температурах (менее минус 50 градусов Цельсия) и при скачках напряжения свыше семи процентов.

Целостность электродов можно проверить еще и мультиметром. Режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.

При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.

Типы цоколей ламп дневного света

Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта. При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать.

Классифицировать их можно на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными техническими показателями являются диаметр и расстояние между витками.

Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.

Маркировка и технические характеристики

Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.

У нас востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно марк ировка осуществляется в формате Ехх. Буква «Е» — общепринятая, от фамилии изобрет ателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.

Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.

Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.

Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.

Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.

На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.

Существует российская и международная маркировка осветительных приборов.

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

Читайте также:
Принудительная вентиляция в гараже: как сделать своими руками

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Как устроены и действуют люминесцентные лампы?

В сравнении с лампами накаливания люминесцентные экономят расходы на электроэнергию до 80% и служат в 13 раз дольше. Благодаря чему это происходит? Мы расскажем об устройстве и принципе работы ламп дневного света, которые обладают такими привлекательными для потребителей свойствами.

Содержание:

  1. 1. Люминесцентный свет: используем в офисе, дома и на улице
  2. 2. Что представляют собой люминесцентные лампы?
  3. 3. Разновидности моделей
  4. 4. От чего зависит свет люминесцентных ламп?

Доказано, что вид источника света влияет на работоспособность и эмоциональное состояние человека. Поэтому во всех общественных местах (офисах, разного рода учреждениях, на производстве) необходимо создавать комфортный свет, который не раздражает, не вызывает утомления и в целом сохраняет хорошее самочувствие человека. Требования к рабочему освещению в организациях прописаны в нормативных документах. Если не соблюдать их, возникает риск ухудшения здоровья сотрудников.

Люминесцентный свет: используем в офисе, дома и на улице

Каким же должно быть рабочее освещение, чтобы человек чувствовал себя комфортно? Санитарные правила и нормы рекомендуют люминесцентные лампы. Эти современные источники света мгновенно включаются, не мерцают, не гудят, излучают ровный, мягкий для глаз свет. Их используют даже в учреждениях с высокими требованиями к освещению: школах, детсадах, больницах, администрациях. Сегодня лампы дневного света активно применяют и в жилых домах – для создания как общего освещения, так и акцентной подсветки. Их устанавливают на потолках, а также в настольных лампах и других светильниках. Кроме того, люминесцентные лампы актуальны и на улице – в подсветке витрин и фасадов зданий, в рекламных вывесках. Они используются в специальных целях, например, при исследованиях в ультрафиолетовом свете различных веществ и в целях дезинфекции медицинских кабинетов.

Читайте также:
Потолки в зале из гипсокартона: подвесные конструкции и их монтаж

Популярность этих ламп объясняется, в том числе, экономичностью и долговечностью. Все это обусловлено их устройством и принципом действия. Об этом, а также о видах изделий поговорим сейчас.

Что представляют собой люминесцентные лампы?

Колба изделий содержит пары ртути или амальгаму – соединения ртути с другими металлами. В ней же находятся инертные газы, в состав которых могут входить гелий, неон, аргон, криптон, ксенон. Изнутри на сосуд нанесено специальное напыление из кристаллического порошка – смеси галофосфатов кальция с ортофосфатами цинка-кальция. Это вещество получило название люминофор. При подаче электричества в лампе формируется дуговой разряд, и химические элементы начинают взаимодействовать. Создается УФ-излучение, которое не воспринимается глазом человека. Люминофор в зависимости от своего состава превращает его в световой поток определенного оттенка. Таким образом, вы можете выбрать комфортный для глаз свет: холодный белый, теплый белый или нейтральный.

Лампы подключаются к электрической сети с помощью дополнительных приспособлений, которые могут быть встроены в цоколь или приобретаются отдельно. Дело в том, что для их зажигания нужен большой электрический импульс, но сопротивление ламп отрицательное: при включении в сеть ток стремительно возрастает, и напряжение надо ограничить. Для разрешения данного противоречия используются, например, дроссели и электронные балласты. С этой современной пускорегулирующей аппаратурой работа лампы протекает стабильно, увеличивается ее световой поток, не возникает неприятного мерцания и шума.

Разновидности моделей

Колба обычно изготавливается из прозрачного или матового, а также цветного стекла. Лампы могут иметь разные формы и типы цоколей. Предлагаем классификации видов изделий и их сферу применения.

По форме колбы и типу цоколя

Линейные лампы имеют форму прямой трубки, поэтому их еще называют трубчатыми (такое обозначение принято и в ГОСТ). Колбы выпускаются строго заданного диаметра. Каждый вариант имеет свою маркировку в виде буквы Т с цифрой, обозначающей размер трубки в дюймах по международному стандарту мер длины. В России принято определять диаметр трубок люминесцентных ламп в миллиметрах. Эта величина показывает, к светильникам какого размера подойдет та или иная модель. Для того, чтобы вы могли разобраться в маркировке изделий, приводим ниже таблицу.

Маркировка колбы T4 T5 T8 T10 T12
Диаметр трубки, дюйм/мм 4/12,8 5/16 8/25 10/32 12/38

Линейные модели имеют штырьковые цоколи G13 с расстоянием между контактами 13 мм.

Компактные лампы выглядят как изогнутая в виде буквы U трубка или несколько соединенных вместе трубок. Лампа имеет небольшие размеры, поэтому ее называют компактной, и она подходит к настольным лампам и бра. Модели могут иметь штырьковые цоколи и тогда маркируются буквой G и цифрой, которая обозначает расстояние между контактами: G23, G27, G24. Лампы с ними применяются в специальных светильниках. Цоколь 2D имеет прямоугольную форму с размерами сторон 36х60 мм, а колба-трубка изогнута по форме плоского квадрата. А вот лампа с цоколем G53 имеет форму круга диаметром 73 мм; колба заключена в круглый диск, который выполняет функцию отражателя и рассеивателя, благодаря чему получается ровный, рассеянный свет.

Модели могут выпускаться с резьбовыми цоколями: Е14, Е27, Е40. Цифры после буквы обозначают диаметр резьбы в миллиметрах. Изделия применяются в любых светильниках, созданных под классические лампы накаливания с патронами соответствующего диаметра.

По назначению

Для общего освещения. Колба изготавливается из прозрачного или матового стекла. В последнем случае уменьшается образование бликов и теней. Изделия заменяют дневной свет. Применяются повсеместно.

Для специального освещения. Выпускаются для особых целей с колбами из цветного стекла (красного, синего, черного и др.). Применяются для дизайнерской подсветки элементов мебели, витрин, создания световых эффектов в ночных клубах, барах. Изделия из прозрачного увиолевого (кварцевого) стекла находят применение для дезинфекции помещений, воды в аквариумах, а также в исследованиях веществ и материалов в УФ-спектре, например: обнаружение трещин в металле, брака на ткани, фальшивых купюр. Кстати, кварцевое стекло изготовлено из чистого оксида кремния путем плавления с горным хрусталем, поэтому имеет особые свойства – пропускает УФ-лучи, в отличие от обычного стекла, которое их задерживает.

От чего зависит свет люминесцентных ламп?

Чем больше размеры лампы, тем выше ее мощность и насыщенность светового потока и, соответственно, тем интенсивнее излучаемый свет. Линейные лампы светят тем ярче, чем длиннее трубка их колбы. А компактные – чем больше изогнутых трубок соединены вместе в одном цоколе. Рассмотрим это подробнее.

Мощность влияет на яркость лампы. Приведем таблицу соответствия длины колбы и мощности линейных ламп.

Длина колбы, мм 450 600 900 1200 1200 1500 1500
Мощность, Вт 15 18 30 36 40 58 80

Например, модель на 15 Вт может применяться в настольной лампе, 30 Вт – для освещения рабочего кабинета, 58 Вт – на производственных площадях. Чем меньше размер колбы, тем меньше лампа потребляет электроэнергии, тем она экономичнее для потребителя.

Мощность компактных люминесцентных ламп связана с типом цоколя:

2D – обычно выпускаются на 16, 28, 36 Вт. Применяются, в основном, для декоративной подсветки или общего освещения небольших по площади комнат, например, их вставляют в светильники для ванной;

G23 и G27 – как правило, имеют мощность от 5 до 14 Вт, широко распространены в настольных лампах и настенных светильниках;

G24 – производятся с характеристиками от 10 до 36 Вт и используются в настольных и настенных светильниках;

G53 – имеют мощность от 6 до 11 Вт, их применяют для подсветки во встроенных нишах, гипсокартонных конструкциях интерьера, натяжных потолках.

Компактные люминесцентные лампы – наиболее экономичный вариант: они потребляют впятеро меньше энергии, чем обычные лампы накаливания, и даже вдвое меньше, чем галогенные, также широко применяемые для точечной подсветки.

Световой поток определяет количество света: чем выше значение, тем ярче светит лампа. Этот параметр напрямую связан и с мощностью: чем она выше, тем насыщеннее будет свет. Для примера приведем таблицу соответствия некоторых значений мощности и интенсивности света люминесцентных ламп.

Читайте также:
Отделка стен кирпичом — декоративные кирпичи и особенности их применения при оформлении в дизайне (95 фото + видео)
Мощность лампы, Вт 5 8 12 15 20 24 30
Количество света, лм 250 400 630 900 1200 1500 1900

К примеру, лампы на 250 – 400 лм популярны в акцентной подсветке и настольных лампах, на 1200 – 1900 лм – используются в общем освещении квартир и офисов.

Свет лампы зависит и от давления газов в колбе. Различают лампы низкого и высокого давления. В первых химическая реакция протекает медленно, поэтому источники излучают равномерный, мягкий свет и применяются в жилых, административных помещениях, так как создают комфортное, оптимальное для глаз человека освещение. В лампах высокого давления взаимодействие веществ протекает интенсивно, поэтому изделия дают яркий, насыщенный свет и используются для освещения заводских цехов и улиц.

Цветовая температура показывает оттенок света, который зависит от состава люминофора. Выбирайте модель люминесцентной лампы с комфортным для глаз светом в зависимости от того, где планируете ее применять: от 2700 до 3500 К – теплый свет с желтым оттенком; применяется в жилых помещениях; от 4000 до 4200 К – нейтральный, естественный, подходит для любого освещения; от 4500 до 6500 К – холодный, с голубоватым или белым оттенком, используется в учреждениях, на производствах, для наружного освещения.

Люминесцентные лампы помогут вам создать качественное освещение и сэкономить расходы! Заказывайте их в нашем интернет-магазине по доступной цене. Для этого перейдите в раздел «Купить в один клик» и оформите покупку.

Лампы дневного света: принцип работы, схемы подключения

Люминесцентные лампы или иначе дневного света, нашли широкое применение как в бытовых условиях, так и производственных. Основным их преимуществом, по сравнению с лампами накаливания, является большая площадь освещения и энергоэффективность. Люминесцентные светильники выпускаются различных видов и мощностей.

Хоть устройство является несложным и надёжным, всё равно возникают такие ситуации, когда светильник перестаёт светить. Чтобы разобраться в чём дело и провести ремонт своими руками, необходимо знать принцип работы этого осветительного прибора, и из каких частей он состоит.

Принцип работы и характеристики

Светильник представляет собой выполненную из стекла колбу прямоугольной формы. С двух сторон, в её торцы, запаиваются по паре электродов. Колба заполняется смесью инертного газа и паров ртути. При подаче на её выводы напряжения возникает тлеющий разряд. Электрод нагревается под действием проходящего через него тока и происходит пробой газа. В результате чего появляется ультрафиолетовое излучение.

Такое излучение не воспринимается человеческим глазом, поэтому на внутренние стенки колбы наносится слой люминофора. Этот материал, поглощая ультрафиолет, излучает видимый свет. Указанное явление получило название люминесценции, отсюда и название лампы. В зависимости от состава люминофора изменяется и оттенок свечения.

Основные характеристики, по которым оцениваются лампы, следующие:

  • потребляемая мощность;
  • эффективность светоотдачи;
  • срок службы;
  • экологичность;
  • задержка включения;
  • мерцания.

Само по себе устройство, включённое в сеть переменного напряжения, работать не сможет. Это связано с тем, что в начальный момент времени оно имеет большое сопротивление. Для появления в нём разряда потребуется кратковременно подать высокое напряжение. После того как возникнет разряд, появится отрицательное дифференциальное сопротивление, т. е. значение тока резко увеличиться, а величина напряжения уменьшится. Такое состояние приведёт к короткому замыканию и выходу лампы из строя.

Для того чтоб этого не происходило, совместно с лампами используются устройства, получившие название балласты. По принципу работы они представляют собой дроссель, подключаемый последовательно с устройством освещения. Используется два основных типа включения:

  • с неоновым стартером и электромагнитным дросселем (ЭмПРА);
  • с электронным дросселем (ЭПРА).

В большинстве светильников, изготовленных для использования ламп этого типа, уже устанавливаются такого вида балласты.

Электромагнитный дроссель

Состоит из самого дросселя и стартера. Стартер, в этом случае, это неоновая лампочка с параллельно подключённым к ней конденсатором. Выводы неонки выполняются из биметалла. Используя явление самоиндукции, при подаче напряжения, балласт формирует импульс порядка одного киловольта, и за счёт своего сопротивления ограничивает ток, протекающий через лампу.

Такая конструкция характеризуется простотой и хорошей безотказностью.

Электрически схема работает следующим образом. Ток, поступающий из промышленной сети, попадает через дроссель на катод лампы и вывод стартера. Цепочка протекания тока выглядит так: сеть — дроссель — катод — стартер — катод — сеть. Перед тем как произойдёт электрический пробой вся мощность магнитного поля, находящаяся в дросселе, попадает на вывод катода.

Стартер в это время находится в состоянии разрыва цепи. В момент пробоя, из-за того, что сопротивление лампы меньше чем стартера, ток потечёт по цепи: сеть — дроссель — катод — катод — сеть. Дроссель начинает выполнять функцию токоограничителя. Конденсатор С1 является компенсирующим конденсатором и применяется для увеличения коэффициента мощности.

Такая схема обладает рядом недостатков:

  • длительный запуск;
  • дополнительное потребление электроэнергии дросселем;
  • может издавать звуковой фон;
  • мерцание лампы с частотой 100 Гц;
  • увеличенный вес и габариты.

Электронный дроссель

Основа работы предполагает использование высокочастотного сигнала до 133 кГц, что позволяет исключить мигание лампы в видимом спектре излучения. Существует две возможности реализации запуска:

  1. Холодный. Позволяет осуществить включение без задержки. Такой способ запуска уменьшает время эксплуатации прибора.
  2. Горячий. Включение осуществляет с прогревом катодов, время запуска составляет около секунды.

Напряжение из питающей сети поступает на диодный мост, состоящий из выпрямительных диодов D1-D4. Через сглаживающий конденсатор попадает на инвертор. Инвертор состоит из четырёх полевых транзисторов, включённых по мостовой схеме и трансформатора Tr. Трансформатор используется тороидального типа. Напряжение колебательного контура, находясь в резонансе, осуществляет пробой газовой среды. После пробоя, сопротивление источника света резко падает. За ним снижается и напряжение, до параметров, позволяющих поддерживать горение.

Нередко встречаются комбинированные способы запуска. В этом случае используется не только подогрев электродов лампы, но и то, что электрическая цепь является колебательным контуром. Резонанс, возникающий в этом контуре, приводит к росту разности потенциалов между выводами источника света. Это приводит к увеличению тока и скорости подогрева электродов. Из-за чего устройство включается сразу. Для того чтоб увеличить срок службы катодов подключается электронный прибор, позистор. Благодаря ему уменьшается добротность контура и ток нагрева уменьшается.

Читайте также:
Принудительная вентиляция в гараже: как сделать своими руками

Причины неисправности

Причинами поломки могут быть две причины, это неисправность самой лампы или повреждение блока запуска.

Повреждение колбы может быть вызвано как механическим путём, так и благодаря деградации. Дело в том, что катоды выполнены из вольфрама, покрытого специальным материалом. При эксплуатации происходит постепенное выгорание этого материала, что нарушает формирование стабильного разряда. Материал представляет собой щёлочноземельный металл. После его значительного выгорания, происходит скачкообразное изменение разности потенциалов и схема управления начинает работать неправильно. Именно из-за выгорания и осыпания металла, происходит потемнение концов лампы.

Неисправности балластов в основном заключаются в повреждении стартера. При этом происходит короткое замыкание. А также могут выходить из строя активные элементы электрической сети и сам дроссель. При неисправном дросселе возрастает ток, из-за межвиткового замыкания, приводящий к расплавлению катодных площадок. Нередко происходит и пробой конденсатора, вслед которому перегорают переходы полевых транзисторов.

Проверка элементов лампы

Если после включения светильника лампочка работает неправильно, необходимо выяснить причину такого поведения. Перед тем как приступить к ремонту требуется убедиться, что причина неисправности именно в светильнике.

Проверяем присутствие напряжение и работоспособность выключателя. Это легко сделать, имея пробник наличия напряжения в электрической сети. Когда точно станет известно, что проблема в источнике света, в первую очередь потребуется выяснить какие элементы нуждаются в ремонте. Это может быть как сама колба, так и пусковое устройство.

Вот перечень основных неисправностей и причин вызвавших их.

  1. Нет никакой реакции на включение. Требуется проверить лампу и дроссель, а также место крепления лампы в патроне.
  2. Лампа не загорается в середине. Неисправен стартер или высоковольтный конденсатор.
  3. Лампа не включается, слышен посторонний звук. Неисправность в дросселе.
  4. Нарушение в оттенке свечения источника. Изменения в люминесцентном слое колбы.
  5. При включении происходит мигание, эффект стробоскопа, запуска нет. Причиной может быть стартер или плохой контакт в патроне.
  6. Устройство светит тускло и в оранжевом спектре. Нарушение герметичности колбы, лампу необходимо как можно быстрей утилизировать.
  7. Края колбы чёрного цвета. Необходимо поменять лампу.

Проще всего можно осуществить проверку путём замены лампы и стартера на заведомо исправные. Проведение такой работы не должно составить труда. В случае если замены нет, придётся проверять исправность с помощью тестера. Если после замены лампа всё так же не работает, то поломка в дросселе.

Проверка дросселя

Первым сигналом, что неисправность в дросселе, будет периодическое моргание света лампы, или визуально можно будет наблюдать за распространением разряда в середине колбы. Для проверки нам понадобится любой мультиметр с функцией прозвонки или измерения сопротивления.

Переключив тестер в режим прозвонки, необходимо дотронутся щупами до выходов обмоток дросселя. Если на экране горит цифра один, или когда стрелочный прибор показывает бесконечность, то обмотка находится в обрыве. Сопротивление исправного дросселя составляет около 40 Ом. В случае отображения нулевого сопротивления или порядка нескольких Ом, делаем вывод, что произошло межвитковое замыкание.

Аналогично можно проверить на короткое замыкание стартер, конденсатор и другие электронные части схемы.

Необходимо отметить, что в случае замены дросселя своими руками необходимо обратить внимание на соответствие мощностей лампы и дросселя.

Проверка стартера

При этом используется ручное замыкание контактов через кнопку, т. е. имитация работы пускателя. Сначала замыкается кнопка S1, а далее включаем и через секунду отключаем линию кнопкой S2, т. е. имитируем работу стартера. В этом случае необходимо соблюдать осторожность, так как напряжение на кнопке будет превышать входное сетевое равное 220 в.

Проверка люминесцентной лампы

Саму лампу (колбу), можно проверить используя схему подключения без стартера или установкой её в исправный светильник.

В таком виде, схема позволяет использовать обычную лампочку накаливания в качестве ограничителя по току. Проверяемая лампа подключается последовательно с выпрямителем. Так как питание осуществляется с использованием постоянного тока, то это вызывает быстрый износ электродов. Хотя, в таком подключении яркость излучения будет заметно ниже, чем при нормальном включении, всё равно, возможно оценить состояние лампы. Мощность лампочки выбирается от 40 Вт, диоды и конденсаторы берутся с запасом по напряжению.

Используя тестер, можно убедиться в целостности контактной пары в самой колбе. Для этого необходимо замерить сопротивление между её выводами. В рабочем состоянии оно должно составлять порядка нескольких Ом.

Маркировка люминесцентных ламп

При замене люминесцентной лампы необходимо учитывать в первую очередь её параметры, они должны соответствовать используемому совместно с ним дросселю. Все источники света маркируются производителями, зная маркировку, несложно будет подобрать замену.

Параметры необходимые учитывать при выборе следующие:

  • мощность;
  • размер;
  • тип цоколя;
  • цветность света.

К сожалению, у производителей нет общего стандарта маркировки, чтоб получить представление о ней рассмотрим два примера.

Philips TL-D36/54—756 G13 T8, здесь:

  • TL-D — обозначает тип лампы, в этом случае стандартная цветопередача.
  • 36/54 — мощность источника, соответствует 36 Вт;
  • 756 — цветовой код, где 7 цифра определяет степень цветопередачи, а число 56 цветовую температуру;
  • G13 — тип цоколя, для используемого примера двухштырьковый.
  • T8 — тип колбы.

Puritec HNS 18W T5 G5 Osram, здесь:

  • HNS — тип лампы, бактерицидная.
  • 18W — мощность прибора, 18 Вт;
  • G5 — тип цоколя.
  • T5 — тип колбы.
  • Osram — торговая марка производителя.

При проведении ремонта, нужно соблюдать технику безопасности. Важно помнить, что нанести вред здоровью может не только опасное для жизни напряжение, но и пары ртути содержащиеся в колбе как короткой, так и длинной.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: