Рекуператор воздуха

Эффективный рекуператор воздуха своими руками

Любой, кто постоянно читает FORUMHOUSE, знает, что качественная вентиляция – залог здорового микроклимата в доме. Правильно рассчитанная и смонтированная система вентиляции обеспечивает постоянный приток свежего воздуха в дом и отток отработанного наружу. Однако зимой, вместе с отработанным воздухом, наружу выбрасывается драгоценное тепло, а с улицы в дом поступает холодный воздух, на нагрев которого тратится дополнительная энергия.

Чтобы не отапливать улицу, всё большее количество современных и энергоэффективных домов оснащают рекуператорами. А т.к. цены на промышленные образцы, мягко говоря, кусаются, то лучший выход – это засучить рукава и сделать рекуператор воздуха для дома самостоятельно!

Принцип действия рекуператора

Прежде чем приступить к конструированию самодельного устройства, необходимо разобраться в принципе его работы.

Слово «рекуператор» (от латинского «recuperatio») означает получение или возвращение чего-либо обратно. Воздушный рекуператор – это устройство, в котором посредством теплообмена происходит передача тепла от потока исходящего, уже нагретого воздуха, входящему холодному воздуху.

Таким образом снижаются теплопотери дома, что позволяет уменьшить затраты на отопление.

Не следует путать понятия воздушное отопление и рекуперация. Одно относится к системе отопления, а второе является частью современной вентиляционной системы загородного дома и даже дачного домика.

Эффективность и экономическая выгода от установки рекуперационной системы в доме зависит от следующих факторов:

  • стоимости энергоносителей;
  • предполагаемых сроков эксплуатации системы;
  • сумм, затраченных на монтаж системы;
  • суммы, затрачиваемой на ежегодное обслуживание системы.

Dan!la:

– Рекуператор – это всего лишь часть (и не самая дорогая) системы принудительной вентиляции. Поэтому его и вентиляцию следует рассматривать как общую систему.

Вентиляция с рекуперацией своими руками

Виды рекуператоров

Рекуператоры классифицируются в зависимости от конструктивного исполнения и предназначения, а именно:

1. По типу движения теплоносителя (воздуха) – прямоток или противоток.

Чертеж рекуператора.

2. По конструктивному исполнению и принципу действия теплообменника (см. схему):

Рекуператор воздуха, устройство.

  • ​роторный; рекуператор;
  • пластинчатый.

1. Роторный рекуператор

Этот тип теплообменника представляет собой закрытый корпус с установленным внутри него ротором (барабаном), приводимым в действие электромотором.

Ротор вращается с определённой скоростью и попеременно оказывается в зоне действия тёплого или холодного воздушного потока.

Таким образом, пластины ротора циклически то нагреваются, то остывают.

В результате накопленное тепло передаётся поступающему холодному уличному воздуху.

Устройства роторного типа имеют высокий КПД (до 85%), не обмерзают при низких температурах и частично регулируют уровень влажности.

Рекуператор воздуха своими руками: чертежи.

К главным недостаткам устройства роторного типа относятся:

  • сложная конструкция, состоящая из электромотора, ротора, приводного ремня и системы воздуховодов;
  • повышенный уровень шума;
  • наличие подвижных частей снижает надёжность системы и приводит к необходимости более частого технического обслуживания.

2. Пластинчатый рекуператор

Пластинчатый рекуператор представляет собой теплообменник (кассету), состоящий из множества тонких пластин, соединённых друг с другом с небольшим зазором.

Тёплый воздух, проходя через кассету, нагревает пластины, которые в свою очередь – за счёт быстрого теплообмена, передают энергию холодному потоку.

Т.к. воздушные потоки не смешиваются друг с другом, теплообмен осуществляется благодаря одновременному охлаждению и нагреванию пластин со всех сторон.

Пластинчатый теплообменник для вентиляции дома имеет следующие плюсы:

  • невысокую стоимость;
  • компактные размеры;
  • простоту устройства;
  • отсутствие подвижных частей.

Пластины для воздушного рекуператора.

У теплообменника этого типа при низкой температуре, из-за образования конденсата, происходит частичное или полное обмерзание пластин теплообменника.

Несмотря на существенный недостаток, этот тип является наиболее распространённым при самостоятельном конструировании.

Рекуператор с роторным теплообменником

Теплообменник пластинчатого рекуператора чаще всего изготавливают из квадратных пластин. В качестве материла для пластин используются:

  • тонкие медные или алюминиевые листы;
  • фольга;
  • паропроницаемые мембраны.

Роторный рекуператор своими руками.

Вентиляция с рекуператором в частном доме

При изготовлении пластинчатого теплообменника мы должны выдержать определённые расстояния между пластинами.

Vitman:

– Оптимальное расстояние между пластинами – не более 3 мм.

Чем меньше зазор между пластинами, и чем они тоньше, тем больше теплообмен между воздушными потоками. Соответственно ,увеличивается КПД установки.

Однако уменьшение толщины зазоров приводит к увеличению скорости образования конденсата. Это, в свою очередь, вызывает закупорку каналов у теплообменника и вызывает падение КПД устройства.

Чтобы бороться с этим явлением, дополнительно подогревают холодный входящий воздух электрическими калориферами или отключают входящий приток и продувают теплообменник только тёплым воздухом.

Это увеличивает трудоёмкость изготовления устройства в домашних условиях.

Но пользователь нашего сайта с ником Megavolt собрал эффективный пластинчатый рекуператор своими руками с блоком управления. Пластины форумчанин сначала решил делать из листовой меди, но, из-за её высокой цены, решил перейти на пищевой алюминий.

Рекуператор для частного дома своими руками.

Megavolt:

– Я боялся, что теплообменник из фольги начнёт вибрировать и «запоёт», но я ошибся, установка работает не громче компьютера. Корпус склеил из пластика. Производительность – 200 м3 в час. Также я изготовил процессорный блок управления системой. Теперь можно наблюдать за работой устройства, так сказать, в режиме «онлайн».

В рабочем режиме на дисплей выводится температура выходящего и входящего воздуха, время, мощность вентиляторов. На случай отключения электричества предусмотрено питание блока управления от АКБ.

Рекуператор воздуха для дома своими руками.

Кроме металла, для изготовления теплообменника можно использовать сотовый поликарбонат. Именно так поступил Hecs73:

– Я купил 11 листов сотового полипропилена 3м/2м/3мм. Распилил их на параллелограммы 1х0.5 м и склеил силиконом. Зазор между листами контролировал 3мм шнуром. Шнурок при сборке сдавило, и зазор вышел в 1,5-2 мм, что благотворно сказалось на КПД и негативно – на падении давления. Теплообменник установил в пенопластовую коробку, подвёл утеплённые воздуховоды диаметром в 160 мм и поставил рекуператор на чердак. Производительность установки – 150 м3. Личные замеры показали, что при температуре 5 °C на улице и 24 °C– в доме на притоке получается 22 °C.

Читайте также:
Плитка под дерево — напольные варианты и основные разновидности в интерьере разных помещений (121 фото)

Также среди самоделок распространён коаксиальный тип рекуператоров.

Vitman:

– По моему мнению, в домашних условиях проще всего сделать коаксиальный (труба в трубе) самодельный самодельный рекуператор.

Такое устройство изготавливают из канализационной пластиковой трубы диаметром 160 мм, длиной 2 м и алюминиевой воздушной гофры диаметром 100 мм и длиной 4 м.

На концы пластиковой трубы одеваются разветвители-переходники, а внутрь трубы, в виде спирали, укладывается полностью растянутая гофра. Благодаря разветвителям, тёплый поток гонится через гофру, а холодный поток идёт внутри пластиковой трубы. В результате потоки разделяются и не смешиваются друг с другом, а холодный воздух, проходя через теплообменник, нагревается.

sim1:

– В качестве эксперимента я совместил коаксиальный рекуператор с грунтовым теплообменником. Длина пластиковой трубы – 2.3 м, диаметр – 160 мм. Алюминиевая гофра: длина 3.5 м, диаметр 100 мм. Устройство я собрал за 3 часа, и обошлось оно мне в 5 т. руб. Разместил горизонтально.

По результатам испытаний форумчанин получил следующие данные:

  • Температура в помещении +24°C.
  • Температура воздуха на входе -7°C.
  • Температура воздуха на выходе +19°C.
  • Производительность до 270 м3.

Vitman:

– Чем длиннее путь, который проходит холодный воздух в теплообменнике, тем выше КПД установки. Советую собрать данное устройство из 4-х труб по 2-2.5 метра каждая. Трубы лучше дополнительно теплоизолировать. Конденсат хоть и появится, но его будет значительно меньше, чем в пластинчатом типе устройства, который не будет работать без дополнительного нагрева входящего потока при низкой температуре. Для сбора конденсата можно установить трубы под углом или вертикально, и вставить штуцер для слива.

Также пользователи сайта FORUMHOUSE предлагают модернизировать конструкцию коаксиального рекуператора.

Хозяин Мастер:

– Нужно поменять местами приточный поток и обратный и пустить холодный воздух по гофре.

Тогда конденсат будет вытекать по пластику, а гофра останется сухой.

saks01:

– Т.к. внешнюю трубу всё равно нужно теплоизолировать, то можно совсем от неё отказаться.

Я планирую собрать длинный короб из ЭППС и положить в него алюминиевую гофру. Думаю, эффективность устройства повысится.

На FORUMHOUSE собраны ответы на все вопросы по рекуперации и вентиляции. Почитайте о самодельном теплообменнике с автоматикой. Также на нашем портале наглядно показывается, как собрать рекуператор из такого распространенного материала, как сотовый поликарбонат. Узнайте, что получится, если совместить коаксиальный рекуператор и грунтовой теплообменник.

А ознакомившись с нашим видеосюжетом, вы узнаете, как теплообменник помогает экономить тепловую энергию.

Вентиляция с рекуперацией в квартире. Без воздуховодов и СМС

Написать этот пост меня подтолкнула недавняя статья о приточной вентиляции в квартире. Я было хотел оставить развёрнутый комментарий, но понял что правильнее будет написать статью, т.к. мой опыт использования комнатных рекуператоров в качестве основной системы вентиляции может быть интересен многим.

Это КДПВ блок рекуперации/регенерации. Надеюсь, ни у кого нет трипофобии?

Итак, всё началось с духоты. Точнее, с утепления квартиры слоем экструзионного пенополистирола по всему периметру (панельная 9-этажка родом из 80-х, с кучей сквозящих углов). В результате чего, квартира стала условно герметичной и вопрос свежего воздуха встал в полный рост.

Поиск решения

Вводные данные были такие: 5-комнатная квартира со сложной планировкой, площадью 91 м2 с потолками 2.55 и несущими железобетонными стенами. Домовые вент.стояки работают чуть лучше чем никак. Куда тянуть и как размещать воздуховоды — вообще не понятно, прятать их особо некуда, да и начинать новый ремонт желания никакого нет.

Двое маленьких детей играют на полу, что исключает приоткрытые форточки. Но свежий воздух нужен прямо сейчас, т.к. залповые проветривания каждые полчаса совсем не спасают, да и постоянно перемещать всю семью из комнаты в комнату — то ещё удовольствие.

Изучая варианты, наткнулся на концепцию комнатных рекуператоров: по сути тот же бризер, но с блоком рекуперации/регенерации тепла и возможностью работы вентилятора как на приток, так и на вытяжку. Суть идеи в том, что устройство работает в циклическом режиме, некоторое время (30-60 сек у разных производителей) продувая воздух в одну сторону, а затем в другую (например, разворачивая блок с вентилятором). Получается аналог работы лёгких с «вдохом» и «выдохом». Центральное ядро из теплоёмкого материала (пластик или керамика) при этом является и теплообменником и временным накопителем тепла — регенератором:

Регенераторы разных моделей, для размещения внутри стены (снизу) или на наружной стене дома (сверху)

Отзывы на такие устройства были противоречивые, но пообщавшись на форуме с одним из создателей подобного девайса, всё-таки решил установить пару штук и посмотреть, какой будет эффект. Выбор пал на простую модель от Vakio. За вполне вменяемые деньги производитель обещал работу при суровом морозе (у нас -40 бывает), до 60 м3*ч с рекуперацией (и до 120 м3*ч — без) и эффективность возврата тепла не менее 80%.

Читайте также:
Полы в деревянном доме своими руками: фото, идеи и пошаговые инструкции

Что ж, заманчиво.

Установка и первые впечатления

Специалисты по алмазному бурению за пол дня наделали красивых дырок отверстий в наружных стенах (требуется 132 диаметр под гильзу 125 мм) и первые три прибора заняли свои места (по одному в спальне, детской и гостиной). И здесь обнаружилась моя ошибка — толщины стен немного не хватило, в результате оголовки гильз торчали снаружи на 5-7 см. Пришлось утеплять пеной — не очень эстетично, ну да ладно.


Внутренний блок. Фильтр устанавливается сверху.


Обратная сторона. Место прижима к гильзе окружено резиновым уплотнителем. Есть заслонка для ручного перекрытия канала — достаточно герметичная.


Шумоглушитель. Не супер, но вполне работает.


Фильтр F6 и крышка. К сожалению, что-то серьёзное туда не поставить, но для лета, вместо блока регенератора, можно поставить модуль с HEPA от пыльцы и пыли.


Поворотный блок с мощным «серверным» вентилятором, производительность — 101 CFM

171 м3*ч. Вот страница завода, если кому интересны характеристики.

Главный вопрос, который интересовал — насколько лучше станет качество воздуха? Стало сильно лучше. Собственно, в тех комнатах, где поселились приборы, мы просто перестали открывать форточки и как-либо ещё проветривать. В остальных комнатах — духота ощущалась сразу, свежий воздух туда не доходил.

Второй вопрос — рекуперация. По сравнению с приоткрытой форточкой — небо и земля. Зимой никаких проблем с холодными сквозняками, очень комфортно. Насколько хорошо работает рекуперация? Я решил это проверить и заморочился с измерениями (об этом — ниже), но в целом — думаю вполне в районе обещанных 80%.

Ну и третий вопрос — шум. Здесь всё немного грустнее. Шумят. На 2-3 скорости (из 7) — примерно как кондиционер, на 5-7 — слышно очень хорошо, особенно моменты разворота вентилятора. Но мне здесь повезло, никто в семье не испытывает проблем с этим шумом, спокойно спим даже при максимальной мощности приборов. Как выяснилось — на свежий воздух быстро «подсаживаешься», в итоге хочется ещё больше свежего воздуха. Так что у нас приборы почти всегда работают на максимуме (только в морозы ставим среднюю скорость).

Нужно больше воздуха!

Через год после установки первых приборов, взяли ещё три, в итоге теперь в квартире по одному в каждой комнате, включая кухню. И вот здесь выяснился неприятный момент: для нормальной работы нескольких приборов, они должны работать в противофазе. Т.е. когда половина из них работает на приток, вторая половина — на вытяжку. И каждые 40 секунд они меняются ролями, разворачивая вентиляторы. Проблема здесь в том, что приборы «глупые» и не умеют синхронизироваться (у производителя есть более дорогие модификации с заявленной возможностью синхронизации, но насколько это хорошо работает — сказать не могу). В общем, каждый раз, когда нужно переключить систему в режим рекуперации, приходится проходить по комнатам с секундомером в руках и каждые 40 секунд переводить один из приборов в нужный режим. И ещё повторять эту процедуру в случае если пропало электропитание (авария на подстанции или ещё что). Не удобно, наличие умных функций здесь бы очень пригодилось.

Но в целом, система работает и радует. Окна в квартире практически никогда не открываются, воздух всегда свежий. Настолько привык к работе вентиляции, что однажды проснулся ночью с неприятным ощущением, что что-то не так. Не сразу понял, что проблема была в духоте — сбой на подстанции обесточил несколько домов и у нас вырубилась вентиляция. Результат прям сразу стал ощутим. Что сказать — к хорошему быстро привыкаешь.

Ещё из важных моментов — необходимость работы увлажнителей в зимний период. Возможно конструкция регенераторов и позволяет вернуть часть влаги обратно, но этот эффект явно минимален и без увлажнителей воздух очень сухой (20-25%). Используем пару ультразвуковых, заливаем воду из осмоса, проблем нет.

Эксплуатация зимой и летом

Для эксплуатации приборов при температуре ниже -10С, предусмотрен так называемый «Зимний режим». При его включении, каждый час запускается пятиминутная усиленная продувка регенератора в режиме вытяжки. Для его отогрева и оттаивания конденсата (который таки намерзает). Это шумно, но терпимо. Больше раздражает необходимость учитывания этой продувки при синхронизации работы приборов зимой. Ведь если они включат продувку одновременно, то в квартире возникнет вакуум пониженное давление, начнётся подсос грязного воздуха из вент.стояков и подъезда. Да и эффективность такой продувки будет минимальной.

Что в итоге приходится делать? Верно, брать в руки секундомер и проходить по всем комнатам, переключая настройки, теперь уже каждые 6 минут (больше 5 минут и кратно циклам по 40 сек в которых работают приборы). Это меня сильно печалит, так что зимний режим я ставлю один раз, когда на улице начинаются лёгкие минуса и выключаю только весной. Да, этим приборам очень сильно не хватает автоматизации и привязки к различным системам умного дома.

Рекуперация зимой работает, даже в морозы. На удивление, проблем за два года эксплуатации особо не было. Так, один раз намертво замёрз регенератор, когда супруга совсем отключила прибор, но не перекрыла задвижку воздуховода — в результате за пол дня медленно уходящий воздух забил блок регенератора намёрзшим конденсатом. Но это скорее авария по вине пользователя. При обычной работе конденсат тоже намерзает, но проблем не создаёт:

Читайте также:
Обои в туалет (72 фото): дизайн покрытия под плитку в интерьере, отделка маленького санузла жидкими

Выглядит колхозно, но это моя вина: толщина стены меньше чем надо, гильза подрезана не по размеру и декоративная решётка успешно отвалилась.

С весны до осени всё вообще замечательно. Блоки регенераторов вынимаются, часть приборов переводится в режим притока (в комнатах, выходящих на северную сторону), часть приборов — в режим вытяжки (обычно делаю соотношение 4-2, чтобы создать небольшое избыточное давление).

Пыль и фильтры

Квартира находится на 5 этаже, крупных дорог рядом нет, но есть частный сектор. А топят у нас углём. Это реально проблема, зимой иногда над городом бывает «морозный смог» с дымом от угольных ТЭЦ и котелен. Фильтры в приборе стоят F6, моются раз в месяц. Вода при этом такая, как будто чернильницу опрокинули. Ну и в сухом виде это тоже не очень приятно:

Грязный и чистый фильтр.

Фильтры нужно промывать регулярно, иначе производительность приборов падает очень заметно. Мытый несколько раз фильтр субъективно не отличается по проницаемости от нового. Но здесь я могу ошибаться.

Измеряем КПД и качество воздуха

«Воздух стал свежий» — это конечно слишком субъективно. Нужно было чем-то измерить его качество и, после долгих поисков, остановился на портативном BLATN 128s

Пыль разного размера, CO2, формальдегид, летучие органические.

Такие данные были получены зимой, с одним взрослым и одним ребёнком в комнате и рекуператоре на средней скорости. Не супер, конечно. На высокой скорости показатели чуть лучше, СО2 в районе 850 ppm.

Прогулявшись с прибором по родственникам, живущим как в квартирах, так и в частных домах, сделал неутешительные выводы: никто не заморачивается с качеством воздуха. CO2 под 1500-2000 ppm встречается через раз, где-то фонит ламинат или новая мебель из ЛДСП. Грустно, в общем.

Для измерения КПД рекуперации взял термогигрометр UNI-T UT333 BT с возможностью построения графика измерений. Прибор тормознутый и у них страшно глючное мобильное приложение, нормально выгрузить графики так и не смог, но общую картину увидеть можно:

В квартире +26, на улице -8, средняя скорость, пылевой фильтр снят, измерения внутри помещения

Если кратко, КПД рекуперации меняется в течении всего цикла, в зависимости от дельты температур между проходящим воздухом и регенератором, который постоянно остывает/нагревается. Минимальный КПД, в конце цикла «вдоха» я насчитал

60% (было -8, стало +12, общая дельта 34), средний за весь цикл — 75-80% (примерно, т.к. нет возможности выгрузить данные, есть только такие графики). Вообще, кому интересно покопаться в данных, множество измерений с разными настройками и скоростью вентилятора я выкладывал в соответствующей теме на Форумхаусе, но общие выводы такие: рекуперация работает и в целом соответствует заявленной.

Выводы

Система работает и свою задачу выполняет. Воздух поступает, рекуперация помогает не использовать дополнительный преднагрев. Да, немного шумно, но для нас это явно «меньшее зло». Кто-то может подумать, что при наличии центрального отопления, эта рекуперация нафиг не нужна и можно просто сделать приток над батареей, но в моём случае это не вариант — т.к. часть зимы батареи у нас просто перекрыты (дом и так перегрет).

Из явных минусов — отсутствие автоматизации и некого централизованного управления (сценарии под разные времена года и жизненные ситуации).

Ну и самый важный вопрос — делал бы я такую систему не в квартире а в своём (строящемся) доме? Нет, конечно! При возможности разместить воздуховоды и изначально всё спланировать — централизованная ПВУ с рекуператором, канальным увлажнителем и прочими ништяками будет вне конкуренции. Как по тишине, так и по комфорту.

Однако для многих квартир, где нет возможности/желания устанавливать централизованные ПВУ, подобная распределённая система из комнатных рекуператоров вполне может стать приемлемым вариантом.

Рекуператор воздуха

Рекуператор воздуха. Виды рекуператоров

Что такое рекуператор воздуха

Рекупера́ция (от лат. recuperatio «обратное получение; возвращение») — возвращение части материалов или энергии для повторного использования в том же технологическом процессе.

Рекуператор воздуха в вентиляции – это установка приточно-вытяжной вентиляции с теплообменником. В теплообменнике тепло отводимого потока сообщается непрерывно приточному потоку через стенки теплообменника.

Эффективность энергосбережения рекуператора может достигать 90%.

В холодную погоду рекуператоры воздуха работают на сохранение тепла в помещении.

В жару рекуператоры воздуха работают на охлаждение воздуха с улицы.

Некоторые виды рекуператоров могут работать на возвращение влаги.

Устройство рекуператора

Достаточно сложно в двух словах объяснить, как устроен рекуператор. Производители различных торговых марок по-разному решают проблему возврата тепла и принципы воздухозамещения для частного дома они предлагают различные.

  • Одна из основных идей теплообмена состоит в том чтобы максимально приблизить приточный и вытяжной потоки воздуха, на встречном или перекрестном противотоке, оставив между ними тонкую разделеляющую прослойку материала с большой теплопроводностью. Такое устройство создает идеальные условия для теплообмена, который происходит между холодной приточкой и теплым вытяжным потоком;
  • Для передачи тепла могут использоваться воздухопроводящие керамические каналы из материала с большой тепловой инерцией. Такая теплообменная вентиляция работает циклично. Рекуператор как бы дышит, нагревая теплообменник на вытяжной фазе цикла и отдает тепло уличному воздуху на фазе притока;
  • Теплообменником может выступать система из двух радиаторов, соединенных трубопроводом, по которому циркулирует жидкость. Одна радиаторная решетка устанавливается на входе, другая на вытяжном канале. Для теплообмена необходим циркуляционный насос.
Читайте также:
Отделка фасада дома мягкой кровлей под кирпич

Существуют и другие устройства рекуперации о которых речь пойдет ниже.

Принцип работы


Принцип работы рекуператора KOMFORT Ultra EC L2 300-H S14

Рассмотрим, как функционируют самые популярные системы возвращения тепла, используемые в бытовых системах ПВУ на примере установок ассортимента магазина HOROS:

  • Центральный рекуператор немецкой компании Blauberg из серии KOMFORT EC D5B модель 180 S28 оснащен двумя вентиляторами с двигателями ЕС, одновременно прогоняющими по воздушным магистралям воздушные потоки притока и вытяжки. Приток тщательно очищается фильтрами G4 и F7. Чтобы понять принцип работы рекуператора, уясним суть его конструкции. Это противоточное устройство, в котором нагретый комнатный воздух передает свою тепловую энергию уличной приточке через перегородки из полистирольных пластин. Экономный прибор потребляет всего 400 Вт, подогревая приток без использования электричества;
  • Другой принцип работы у моноблочных рекуператоров комнатного типа, особенно популярных в частном покупательском секторе. Установка Vakio Base функционирует циклично, в течение сорока секунд наполняя комнату притоком, а потом за такой же отрезок времени происходит вытяжка. Керамический рекуператор на фазе выдоха накапливает тепло, а затем отдает его притоку. Эффективность инновационных керамических теплообменников Vakio может доходить до 90%. Идеально складывается совместная работа двух таких систем, когда в одной комнате прибор работает на выдох, другой рекуператор в соседнем помещении производит закачивание притока.

Мы уже рассмотрели некоторые виды рекуператоров воздуха, а теперь перечислим все возможные варианты систем рекуперации, обозначив особенности их работы и обслуживания, не забыв отметить основные преимущества и минусы каждой конструкции.

Роторный рекуператор

Принцип работы роторного рекуператора основан на вращении барабана цилиндрической формы наполненной слоями гофрированной стали продольно. Теплообмен происходит при прохождении через теплообменник теплого и холодного потока попеременно. При прохождении через теплообменник происходит частичный подмес потоков.

Эффективность рекуперации в роторном теплообменнике можно регулировать, эффективность увеличивается при повышении скорости вращения.

  • высокий КПД, выше чем у пластинчатых рекуператоров;
  • возможность регулировать подачу тепла переключением скорости вращения.
  • движущийся механизм требует затрат электроэнергии;
  • воздушные потоки контактируют, требуется использование фильтров;
  • при высокой влажности, потребуется отвод конденсата.

Пластинчатый перекрестно-точный рекуператор

В пластинчатом рекуператоре воздух разделяется на потоки при помощи пластин. Ребра жесткости между пластинами служат дополнительными направляющими воздушного потока.

По направлению воздушного потока пластинчатые рекуператоры делятся:

  • перекрестно-точные, где воздух движется крест на крест;
  • параллельные, где потоки движутся параллельно в одном направлении;
  • противоточные, где потоки движутся в противоположных направлениях.

Пластинчатые рекуператоры из разных материалов имеют свои плюсы и минусы.

Алюминиевый рекуператор
  • преимущество в стоимости;
  • высокая теплопроводность;
  • высокий КПД;
  • легко моется.
  • большой вес, увеличение площади теплообменника увеличивает вес установки;
  • негигроскопичность, требует отведения конденсата.
Пластиковый рекуператор
  • более высокий КПД по сравнению с алюминиевыми.
  • сушит воздух зимой;
  • негигроскопичность, требует отвода конденсата.
Бумажный рекуператор (целлюлозный)
  • высокий КПД;
  • легкий вес, площадь теплообменника легко увеличить.
  • нельзя чистить;
  • быстро деформируются от влажности;
  • нельзя использовать в помещениях с высокой влажностью.
Мембранный рекуператор (целлюлозный)
  • высокий КПД;
  • легкий вес, площадь теплообменника легко увеличить;
  • работает на сохранение влаги, гигроскопичен, не впитывает влагу, но проводит через себя.
  • нельзя чистить;
  • нельзя использовать в помещениях с высокой влажностью.

Общие преимущества пластинчатых рекуператоров – высокий КПД и низкая стоимость, работа теплообменника не требует электроэнергии, к минусам можно отнести вероятность обмерзания в зимний период.

Рекуператор с промежуточным теплоносителем

В циркуляционном рекуператоре перенос тела происходит с помощью воды, антифриза, либо других теплоносителей. Приточный и вытяжной теплообменники могут быть расположены на удалении друг от друга.

  • возможность удаленного расположения двух и более теплообменников;
  • потоки не смешиваются.
  • невысокий КПД;
  • требуют дополнительных энергозатрат для подачи теплоносителей к теплообменникам, что делает систему нецелесообразной.

Камерный рекуператор

Ключевым узлом данного устройства является теплообменная камера. Уличный и использованный теплый воздух попадают в ее внутреннее пространство, но не смешиваются. Продвигаясь по отдельным коридорам они управляются специальной заслонкой, попадая поочередно то в одну, то в другую половину камеры. Вытяжной воздух нагревает стенки, после чего заслонка срабатывает и направление движения воздушных потоков меняется. Теперь холодная приточка движется мимо теплых стен, нагреваясь и возвращая тепло в квартиру. Недостатком этих устройств считается высокая вероятность смешения встречных и уходящих потоков и как следствие – попадание в квартиру посторонних запахов. Отметим достоинства камерных рекуператоров:

  • Высокий коэффициент рекуперации (до 80%) способен серьезно сократить затраты на отопление помещений.
  • Длительный срок эксплуатации объясняется тем, что устройство имеет небольшое количество движущихся частей.
  • Благодаря простой конструкции, камерный рекуператор легко монтируется. При правильно подобранных параметрах, его монтаж и запуск в эксплуатацию можно выполнить самостоятельно.
  • Устройство камерного рекуператора обеспечивает не только возвращение тепла, но и поддержание нормативного уровня влажности в помещении.

Использование камеры для теплообмена доказало свою особенную эффективность в наших северных регионах, где возникает ощутимая разница уличной и комнатной температур.

Фреоновый рекуператор

Функционал фреоновых рекуператоров реализуется с использованием двух физических явлений – изменения агрегатного состояния хладагента и плотности жидкого фреона. Она намного превышает плотность обычного пара. Благодаря этим свойствам, охлаждающая жидкость всегда стремиться занять место в нижней части рекуператора. Рассмотрим, как все это влияет на теплообменные процессы устройства и на возможности обогрева помещения:

  • Конструкцией фреоновых рекуператоров предусмотрены кольцеобразные коллекторы по которым в потоках теплого вытяжного воздуха и холодной приточки циркулирует хладагент.
  • Направление движения теплой вытяжки предусматривается в нижней части коллектора, где сосредотачивается жидкий фреон. Забирая тепло из вытяжного потока, хладагент закипает, меняя агрегатное состояние на парообразное.
  • В виде пара он устремляется по коллектору вверх, туда, где трубы обдуваются холодными струями воздушного притока. Отдавая тепло приточки фреон конденсируется, и цикл повторяется.
  • Зимой фреоновый рекуператор экономит тепловую энергию, возвращая тепло в квартиру. Летом, заменяя кондиционер несет в дом желанную прохладу.
Читайте также:
Расчет потолка из гипсокартона: необходимое количество листов, профилей, креплений

Преимущества и недостатки рекуператоров разных видов

Рекуператоры изготавливаются с использованием энергосберегающих технологий. Цена их вполне доступна для кошелька среднеобеспеченного гражданина. Снижая затраты на обогрев помещений зимой, они охлаждают приточку летом. Чтобы понять, какой рекуператор воздуха выбрать, нужно иметь представление не только о плюсах устройств каждого вида. Рассмотрим недостатки теплообменных систем вентиляции:

  • Для роторных, камерных теплообменников и в меньшей степени пластинчатых рекуператоров свойственна возможность смешения приточных и вытяжных потоков. Попадание грязного воздуха в приток особенно нежелательно для систем вентиляции, обеспечивающих воздухообмен чистых помещений. Поэтому в больницах и на некоторых производствах с повышенными требованиями к чистоте воздуха рекомендуется использовать рекуператоры с промежуточным теплоносителем или приборы, работающие на фреоне;
  • Рекуператоры создают дополнительное пневмо сопротивление воздушной сети, которое обязательно учитывается конструкторами, при выборе мощности приточного вентилятора;
  • Рекуператор – достаточно дорогое устройство, цена которого повышает общую стоимость вентустановки. Соответственно возрастает стоимость регламентного обслуживания оборудования, хотя энергосберегающий эффект позволяет пользователям это удорожание игнорировать;
  • Вентиляционные установки оснащенные системами возврата тепла отличаются более значительными габаритами. Особенно большие размеры у пластинчатых теплообменников, а для рекуператоров с разнесенными теплообменниками (с промежуточным теплоносителем) потребуется место для размещения трасс трубопроводов и узлов обвязки.

Рекуператоры для дома, квартиры, промышленности

На рынке вентоборудования предлагается достаточное количество инновационных ПВУ. Подбирать необходимую установку следует по производительности. Выбирая рекуператор воздуха для дома, обратите внимание на раздел приточно-вытяжные установки магазина HOROS. Здесь представлено оборудование самых авторитетных мировых брендов. Рассчитаем требуемое количество притока по нормативу воздухообмена. Согласно СНиП его значение 0,35 1/ч. Если дом у вас средних размеров, с площадью 120 м.кв. и объемом 450 куб, вам потребуется установка производительностью 450*0,35=160 куб/час. Предусмотрев 10% запас мощности, выбираем ПВУ немецкой торговой марки Blauberg KOMFORT EC, производительностью 180 куб/час. Это центральная установка. Ее преимущество в том, что обустроив единственный рекуператор системой воздуховодов, вы сможете развести приток и вытяжку по всем комнатам дома.

Аналогично выбирается рекуператор воздуха для квартиры, а какой выбрать лучше прибор, нам также подскажут расчеты. Если у Вас двухкомнатная квартира, со спальнями объемом 50 и 100 куб, потребность в свежем воздухе, подсчитанная по вышеизложенной методике будет соответственно 17,5 и 35 куб/час. В разделе рекуператоры воздуха выбираем две моноблочные установки. Для маленькой комнаты идеальным решением будет установка Winzel Comfo, от той же компании Blauberg. В режиме рекуперации ей доступна производительность в диапазоне 10-25 куб/час, что соответствует габаритам маленькой комнаты. Аналогично подбираем установку для большой комнаты.

Главная особенность вентиляции промышленных предприятий в большом объеме помещений и масштабах требуемого воздухообмена. Промышленный рекуператор воздуха отличается от бытовых вентустановок тем, что перекачивает воздуха в объеме на несколько порядков больше. Если вы хозяин швейного предприятия, а в цеху работает 35 человек, посчитаем необходимую производительность рекуператора по численности. Согласно СНиП на каждого работника причитается не менее 30 куб/ч. Получается, что производительность вентустановки должна быть 1050 куб/час. Заглянув в раздел ПВУ магазина HOROS, выбираем для своего предприятия рекуператор Blauberg KOMFORT EC производительностью 1200 куб/час.

Эффективность рекуператоров

Широкое распространение рекуператорных установок вызывает необходимость создания методик оценки их эффективности. Производители и эксперты в области вентоборудования имеют дело с двумя основными коэффициентами эффективности. Один из них рассчитывается по температурным параметрам воздуха, другой по энтальпии. Температура измеряется в трех точках системы:

  • На воздухозаборе уличного воздуха – ;
  • На притоке, в районе приточной решетки – tп;
  • На месте квартирной вытяжки – .

Тогда температурный коэффициент рекуперации (kр) можно рассчитать по следующей формуле:

kр = (tп – tу)/(tв – tу)

Принцип расчета по энтальпии учитывает не только температуру, но и влагосодержание воздуха или его относительную влажность. Считается что этот расчет хотя и сложнее температурного, но на порядок точнее его. Для расчета параметры температуры и влажности измеряются в тех же точках, что при предыдущих вычислениях. После этого для каждой точки подсчитывается энтальпия, определяемая как количество теплоты воздуха, отнесенное к единице веса (1 кг). Значение энтальпии получают по расчетным i-d диаграммам на пересечении изометрических линий замеренной температуры и относительной влажности помещения. Формула расчета коэффициента рекуперации по энтальпии:

kр = (Эп – Эу)/(Эв – Эу)

  • Эп – энтальпия воздуха на приточной решетке;
  • Эу – энтальпия на воздухозаборе;
  • Эв – энтальпия воздуха на вытяжке.

Основной смысл всех методик расчетов определение процентного соотношения возвращаемой в дом тепловой энергии. В средне-годовом значение, рекуперации позволяет возвращать 30-40% тепловой энергии, затрачиваемой на подогрев притока. При температуре уличного воздуха около нуля (-5..+5 °C) возврат тепловой энергии повышается до 70%. Эффективность работы рекуператоров оказалась зависима от климатических условий. Это объясняет тот факт, что наибольшей популярностью приборы пользуются в странах с мягким климатом. Несмотря на суровые условия русской зимы, рекуператоры популярны в нашей стране. Это прежде всего модели с опцией дополнительного электро подогрева приточки и модели с байпасом для отвода излишков приточного воздуха.

Читайте также:
Особенности настольных индукционных одноконфорочных плит

Перед покупкой рекуператора, важно учесть площадь помещения, конструктивные особенности здания, исправность и расположение общедомовых вытяжек.

Консультация инженера по вентиляции в компании Хорос всегда бесплатна.

Мы поможем вам подобрать оптимальный вариант вентиляции.

Рекуператор воздуха или бризер: как сохранить тепло в доме

Рекуператор воздуха или бризер: как сохранить тепло в доме

Одна из проблем домашней приточной вентиляции заключается в температуре подаваемого воздуха. Зимой холодный воздух с низкой температурой попадает внутрь и охлаждает помещения. Это сказывается и на комфорте жилья, и на ценнике за отопление. Разберемся, как можно нагреть приточный воздух в доме.

СПОСОБ №1: РЕКУПЕРАЦИЯ ТЕПЛА

Рекуператор воздуха, или теплообменник, утилизирует тепло вытяжного воздуха и использует его для нагрева приточного. Рекуператор устанавливается в вентиляционную установку, которая работает и на вход, и на выход. Такая приточно-вытяжная вентиляция с рекуперацией не позволяет теплу уйти вместе с удаляемым воздухом. Способов реализации этой системы немало, однако в бытовых или самодельных вариантах чаще всего применяют пластинчатые и роторные рекуператоры.

Пластинчатый рекуператор

Он получил широкое распространение благодаря своей простоте и компактным размерам. У пластинчатого рекуператора есть и другие названия: перекрестный или поточный. Все они отражают его конструктивные особенности. В его корпусе параллельными слоями уложены пластины, между которыми проходят два потока: холодный приточный (в дом) и теплый вытяжной (из дома). Потоки в теплообменнике пересекаются, обмениваются теплом, но не смешиваются. Этот эффект возникает за счет использования пластин из определенных материалов и уложенных определенным образом.

  1. Пластины укладывают слоями на определенном расстоянии друг от друга параллельно воздушным потокам. В пространстве между пластинами движутся потоки вытяжного и приточного воздуха.
  2. Пересекающиеся потоки приточного и вытяжного воздуха должны чередоваться. Грубо говоря, нечетные потоки – приточные, четные – вытяжные.
  3. Важное условие: конструкция рекуператора должна быть герметичной. Это исключит перемешивание потоков.
  4. Рекуперация полезной тепловой энергии эффективнее, если пластины сделаны из материала с высокой теплопроводностью. Это может быть целлюлоза или алюминий, обработанный особым образом (например, при помощи поликарбоната).

Холодный приточный воздух, встречая пластины на своем пути, расслаивается на мелкие потоки. Каждый такой мини-поток сверху и снизу соприкасается с теплым вытяжным воздухом. За счет высокой теплопроводности пластин, тепло от одного вытяжного потока передается приточному. При этом загрязнители, удаляемые вытяжкой, не попадают в приточный поток.

Роторный рекуператор

У него те же требования: вытяжка и приток должны обмениваться теплом, но не загрязнениями. Основа такого рекуператора – вращающийся барабан, ротор. Он представляет собой короткий цилиндр из большого количества гофрированных стальных пластин. Ротор вращается как в вытяжном потоке, так и в приточном.

  1. Слои барабана располагаются параллельно воздушным потокам, поэтому площадь контакта между пластинами и воздухом большая, это повышает интенсивность теплообмена.
  2. Приток и вытяжка разграничены перегородкой и практически не смешиваются.
  3. Роторный рекуператор аккумулирует тепло из воздуха, удаляемого из комнаты, и затем отдает его приточному воздуху.

Роторный рекуператор эффективнее пластинчатого, но занимает больше места. Для него нужна большая вентиляционная камера. Поэтому для дома обычно используют пластинчатые рекуператоры воздуха. Насколько это оправдано?

Недостатки бытовых рекуператоров

Очень распространенная проблема – обледенение рекуператора. Именно в холодное время года, когда обогрев воздуха особенно важен, рекуператоры часто отказывают. Даже незначительное снижение температуры ниже 0°С может привести к обмерзанию воздушного пространства между пластинами. Дело в том, что вместе с теплым вытяжным воздухом в рекуператор поступает влага. При охлаждении она конденсируется и замерзает. Пользователи борются с этим негативным эффектом, либо отключая приток воздуха на какое-то время, либо дополняя систему электрическим нагревателем. Чем выше цена рекуператора, тем надежнее он работает при низких температурах. Но даже самые продвинутые модели не застрахованы от этого негативного эффекта.

Еще один минус – низкий коэффициент полезного действия (КПД), то есть недостаточная эффективность рекуперации. Сколько тепла от вытяжки отдается приточному воздуху, зависит от сложности конструкции. У хороших рекуператоров КПД около 60-75%, у не очень хороших – около 40-50%. От КПД зависит срок окупаемости вентиляционной установки с рекуперацией тепла. Для его расчета есть специальные онлайн-калькуляторы. Мы без труда нашли один из них и сделали несколько тестовых расчетов. Получилось следующее: если установить в квартиру вентиляционную камеру с рекуперацией, то она окупится в среднем через 5-15 лет, в зависимости от тарифов на электроэнергию, средней температуры зимой, стоимости вентиляции и КПД рекуператора.

Выходит, сама по себе рекуперация тепла хороша. При правильной реализации она действительно может сэкономить энергию и деньги. К примеру, в Европе строят дома со встроенной центральной вентиляцией с теплообменником. Но если рекуперация заранее не предусмотрена, то зачастую приточно-вытяжная вентиляция с рекуперацией стоит неоправданно дорого: тут и сама венткамера, и монтаж, и ремонт в квартире, и траты на нагрев для защиты рекуператора от обмерзания.

Для квартиры с небольшим воздухообменом проще и дешевле нагревать приточный воздух непосредственно на входе в помещение. Разберем этот способ на примере бризера.

Читайте также:
Раздвижные двери в ванную комнату (37 фото): как выбрать двери-купе для ванной комнаты и туалета, стеклянные конструкции для санузла, межкомнатные шпонированные изделия

Расчет отопления в частном доме

Расчет отопления в частном доме с помощью онлайн-калькулятора – рассчитайте теплопотери, мощность котла и секции радиаторов отопления по СНиП.

В процессе строительства любого дома, рано или поздно возникает вопрос – как правильно рассчитать систему отопления? Это актуальная проблема не исчерпает свой ресурс никогда, ведь если вы купите котел меньшей мощности, чем необходимо, придется затратить много сил для создания вторичного обогрева масляными и инфракрасными радиаторами, тепловыми пушками, электрокаминами, что также приведет к колоссальному расходу электроэнергии. Если же вы создадите систему отопления с чрезмерным запасом, то оборудование будет работать в половину мощности, а топлива будет потреблять практически столько же.

Наш калькулятор расчета отопления частного дома поможет вам не допустить типичных ошибок начинающих строителей. Вы получите максимально приближенное к реальности значение теплопотерь, производительности оборудования, количества секций радиатора и прочих данных, необходимых для создания надежной системы отопления. Главным преимуществом калькуляторов КАЛК.ПРО является высокая точность расчетных данных и минимальные знания со стороны пользователя – весь процесс автоматизирован, исходные параметры максимально обобщены, а их значения вы можно легко заполнить, опираясь на собственный опыт.

Система отопления своими руками

Выполнить расчёт системы отопления частного дома без оценки теплопотерь окружающих конструкций невозможно.

В России, как правило, долгие холодные зимы, здания теряют тепло из-за перепадов температур внутри и снаружи помещений. Чем больше площадь дома, ограждающих и сквозных конструкций (кровля, окна, двери), тем большее значение теплопотерь выходит. Существенное влияние оказывает материал и толщина стен, наличие или отсутствие теплоизоляции.

Например, стены из дерева и газобетона обладают намного меньшим показателем теплопроводности, чем кирпич. Материалы с максимальными показателями теплового сопротивления используются в качестве изоляции (минеральная вата, пенополистирол).

Перед созданием отопительной системы дома, нужно тщательно продумать все организационные и технические моменты, чтобы сразу после постройки «коробки», приступить к финальной фазе строительства, а не откладывать на долгие месяцы долгожданное заселение.

Отопление в частном доме базируется на «трех слонах»:

  • нагревательный элемент (котел);
  • система труб;
  • радиаторы.

Какой котел лучше выбрать для дома?

Котлы отопления являются главным компонентом всей системы. Именно они будут обеспечивать тепло вашего дома, поэтому к их выбору нужно относиться особенно внимательно. По типу питания их подразделяют на:

  • электрические;
  • твердотопливные;
  • жидкотопливные;
  • газовые.

Каждый из них имеет ряд существенных преимуществ и недостатков.

  1. Электрические котлы не завоевали большой популярности, в первую очередь из-за достаточно большой стоимости и дороговизне в обслуживании. Тарифы на электроэнергию оставляют желать лучшего, есть вероятность разрыва линий электропередач, в результате которого ваш дом может остаться без отопления.
  2. Твердотопливные котлы часто используются в глухих деревнях и поселках, где нет централизованных коммуникационных сетей. Они нагревают воду за счет дров, брикетов и угля. Важным недостатком является необходимость постоянного контроля горючего, в случае, если топливо прогорит, и вы не успеете пополнить запасы, дом перестанет отапливаться. В современных моделях эта проблема решена, за счет автоматического податчика, но цена таких устройств намного выше.
  3. Жидкотопливные котлы, в подавляющем большинстве случаев, работают на дизельном топливе. Они обладают отличной производительностью из-за высокого КПД горючего, но большая цена на сырье и потребность резервуаров с дизелем, ограничивает многих покупателей.
  4. Самым оптимальным решением для загородного дома являются газовые котлы. Из-за небольшого размера, низкой цены на газ и высокой теплоотдачи они завоевали доверие большей части населения.

Как выбрать трубы для отопления?

Магистрали отопления снабжают все обогревательные устройства в доме. В зависимости от материала изготовления, они подразделяются на:

  • металлические;
  • металлопластиковые;
  • пластиковые.

Трубы из металла наиболее сложные в монтаже (из-за необходимости сварки швов), подвержены коррозии, обладают большим весом и дорого стоят. Преимуществами является высокая прочность, устойчивость к перепадам температур и способность выдерживать большие давления. Они используются в многоквартирных домах, в частном строительстве применять их нецелесообразно.

Полимерные трубы из металлопластика и полипропилена очень схожи по своим параметрам. Легкость материала, пластичность, отсутствие коррозии, подавление шумов и, конечно же, низкая цена. Единственным отличием первых, является наличие алюминиевой прослойки между двумя слоями пластика, из-за которого увеличивается показатель теплопроводности. Поэтому трубы из металлопластика применяются для отопления, а пластиковые для водоснабжения.

Выбираем радиаторы для дома

Последний элемент классической системы отопления – радиаторы. Они также разделяются по материалу на следующие группы:

  • чугунные;
  • стальные;
  • алюминиевые;
  • биметаллические.

Чугунные батареи знакомы всем с детства, потому что устанавливались почти во всех многоквартирных домах. Они обладают высокими показателями теплоемкости (долго остывают), устойчивы к перепадам температур и давлений в системе. Минусом является большая цена, хрупкость и сложность монтажа.

На смену им пришли стальные радиаторы. Большое разнообразие форм и размеров, небольшая стоимость и простота установки повлияли на повсеместное распространение. Тем не менее, у них тоже есть свои недостатки. Из-за низкой теплоемкости батареи быстро остывают, а тонкий корпус не позволяет использовать их в сетях с высоким давлением.

В последнее время набирают популярность обогреватели из алюминия. Их главным преимуществом является высокая теплоотдача, это позволяет прогревать комнату до приемлемой температуры за 10-15 минут. Однако они требовательны к теплоносителю, если внутри системы в больших количествах содержится щелочи или кислоты, то срок службы радиатора значительно сокращается.

Читайте также:
Размер листа металлочерепицы для крыши

Также сейчас широкое распространение получают биметаллические радиаторы, у которых внутренние стенки выполнены из устойчивой к коррозии и давлению стали, а снаружи из алюминия с высокими показателями теплоотдачи. Обогреватели обладают высоким сроком службы около 20-30 лет. Благодаря подобным качествам это самые дорогие изделия на рынке, однако они более чем оправдывают свою стоимость.

Используйте предложенные инструменты для расчета отопления частного дома и проектируйте систему отопления, которая будет эффективно, надежно и долго обогревать ваш дом, даже в самые суровые зимы.

OtoplenieCalc.ru — онлайн калькуляторы расчета отопления

Калькуляторы отопления онлайн

Наш калькулятор поможет вам быстро и максимально точно рассчитать мощность отопительных приборов для дома на основе нескольких параметров, подсчитать количество секций в радиаторах и узнать о расходах на отопление.

Правильный расчёт отопительной системы – важнейший этап на стадии строительства дома. От того, насколько правильно вы подберете котел и количество радиаторов зависит эффективность отопления и расходы на него. Ведь если, например, установить котел меньшей мощности, чем нужно, или недостаточное количество радиаторов, то в холодное время года вам придется пользоваться дополнительными источниками тепла – а это значит, что затраты на обогрев помещения вырастут в разы.

Чтобы облегчить вам расчет системы отопления, мы создали простые, удобные и максимально точные калькуляторы, которые позволят не допустить критичных ошибок при расчетах.

Бесплатные онлайн калькуляторы расчета отопления

Расчет мощности котла и теплопотерь

Просто введите и выберите готовые значения и нажмите на кнопку “Рассчитать”. Вы получите нужные вам данные: мощность котла и теплопотери дома

Расчет количества секций радиаторов отопления

Калькулятор позволяет правильно рассчитать количество секций в радиаторах отопления для максимальной эффективности.

Посчитать расходы и сравнить

После расчета вы сможете узнать, сколько вы тратите на отопление и сравнить затраты с тем или иным источником тепла.

Проектирование отопления дома

Оборудовать котельную

Котельная должна быть оборудована в соответствии с требованиями, так что к этому вопросу нужно подойти серьезно.

Рассчитать мощность и типа котла

От мощности котла зависит эффективность всей отопительной системы. Если вы выбрали слабый котел, то готовьтесь к дополнительным тратам.

Рассчитать количество радиаторов и секций в них

Это тоже важный параметр, недостаточное количество радиаторов снижает эффективность отопительной системы.

Выбрать схему подключения радиаторов

Система подключения радиаторов отопления может быть однотрубной, двухтрубной, лучевой или выполнена по схеме Тихельмана

Монтаж котла, обвязка, подключение радиаторов

На этом этапе следует тщательно продумать схему обвязки котла, подключения радиаторов, циркуляционного насоса, расширительного бака и других элементов

Заполнение системы теплоносителем и запуск

На последнем шаге остается только наполнить систему водой или антифризом, а потом запустить и протестировать систему отопления.

Для обеспечения комфортного проживания в холодное время года еще на этапе проецирования частного дома нужно позаботиться о расчете и монтаже отопления. Правильно произведенные тепловые калькуляции позволят определить оптимальную и экономически выгодную отопительную систему. Любая погрешность может привести к тому, что вы будете мерзнуть либо в здание будет жарко и душно.

Самостоятельные расчеты не окажутся проблемой для людей с техническим образованием. Однако не каждый обладает физико-математическими навыками, поэтому хорошим путеводителем в подсчетах будет онлайн калькулятор. Он поможет выявить тепловые потери дома и вычислить мощность, которой должен обладать котел. Так же определит количество необходимых радиаторов и сколько должно быть в нем секций. Сделает за вас расчет затрат на отопление, что пригодится для выбора подходящего источника тепла. Соберите нужные данные для вычисления.

Определите тепловые потери. Для этого, необходимо знать, из какого материала построены внешние стены и напольные покрытия, чем утеплены и их толщину. Измерьте площадь дома, окон и наружных дверей. Высокая интенсивность потери тепла у вентиляции и канализации. Их тоже нужно учитывать в расчетах.

Климатические условия местонахождения дома играют важную роль в выборе отопительной системы. Узнайте среднегодовую и минимальную температуру в вашем регионе, а также среднюю скорость ветра.

Расчет мощности котла и теплопотерь.

Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:

  1. Разница температуры снаружи и внутри здания (ΔT);
  2. Теплозащитные свойства объектов дома (R);

Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов

Таблица 1. Теплозащитные свойства стен

толщина в 3 кирпича (79 сантиметров)

толщина в 2.5 кирпича (67 сантиметров)

толщина в 2 кирпича (54 сантиметров)

Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)

Таблица 2. Тепловые расходы окон

Тип окна RT q. Вт/ Q. Вт
Обычное окно с двойными рамами 0.37 135 216
Стеклопакет (толщина стекла 4 мм)

RT — сопротивление теплопередачи;

  1. Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;

четные цифры указывают на воздушное пространство в мм;

Ar — зазор в стеклопакете заполнен аргоном;

К – окно имеет наружное тепловое покрытие.

Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:

Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае

R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2

Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:

  • Электрические котлы;
  • Газовые котлы
  • Нагреватели на твердом и жидком топливе
  • Гибридные (электрические и на твердом топливе)

Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:

  1. Расчет мощности по площади помещений.

По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.

Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)

  1. Расчет мощности по объему помещений.

Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:

  • На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
  • На 0.9, если ваша квартира на первом или последнем этаже;
  • Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.

Расчёт радиаторов отопления на квадратный метр

Несмотря на разнообразие рынка отопительных систем, радиаторы всегда остаются в тренде. Однако владельцы отопительного оборудования часто допускают ошибки в его эксплуатации. Самая распространенная является несоответствие теплоотдачи батареи с площадью помещения. Самым простым способом расчёта батареи является 100 Вт на 1 м2. Зная площадь комнаты, умножьте ее на 100.

Если радиатор многосекционный, то воспользуйтесь формулой: N = Q/ Qус, где N это количества секции, а Qус – мощность каждой секции по отдельности. В случае, когда высота потолков превышает 2,7 м., воспользуйтесь расчетом по объему. Для более точной информации теплоотдачи можно воспользоваться коэффициентами:

  • Количество внешних стен (Кф. 1.1, 1.2);
  • Направленность комнаты на стороны света (Кф. 1.1, если на север и восток);
  • Коэффициент утепления стен (0.85, 1, 1.27);
  • Климатические условия (-35° — Кф. 1.5, -25°- Кф. 1.3, -15°- Кф. 1.1, -10° — Кф 0.7);
  • Высота потолков (Кф. От 1 до 1.2);
  • Этаж квартиры (Кф. От 1 до 0.8);

Тип оконной рамы (из дерева -1.27, однослойный стеклопакет – 1, двойной стеклопакет – 0.85);

Q = S × 100 ×… (значение коэффициента)

Расчет затрат на отопление

Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:

  1. Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
  2. Установка обогревательной системы.
  3. Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
  4. Поддержка оборудования в рабочем состояние.

При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.

Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества

Сколько тепла в кВт вам требуется для обогрева дома — проверяем на калькуляторе!

Если мы собираемся по максимуму экономить в той или иной сфере жизни, то необходимо хорошо представлять: куда, в каких количествах и на что тратятся наши деньги. А одной из наиболее чувствительных статей расходов семейного бюджета в наше время становятся коммунальные платежи. И если с затратами на электроэнергию относительная ясность имеется, так как по большей части все на виду и довольно понятно, то с отоплением – несколько сложнее.

Сколько тепла нам требуется для обогрева жилья?

Неважно, какая схема или система применяется для этих целей, в первую очередь необходимо обладать информацией, сколько тепла нам требуется для обогрева жилья? Да, вопрос звучит именно так, пока без перехода в «денежную плоскость». Да мы и не сможет спрогнозировать финансовые расходы, пока не выразим требуемую тепловую энергию в каких-то понятных величинах. Например, в киловаттах.

Вот этим и займемся сегодня.

Немного общей информации – что такое требуемое количество тепла?

Очень вкратце, все это и так известно – просто требуется небольшая систематизация.

Современному человеку для комфортного проживания требуется создание определённого микроклимата, одной из важнейших составляющих которого является температура воздуха в помещении. И хотя «тепловые пристрастия» могут разниться, можно смело утверждать, что для большинства людей эта зона «температурного комфорта» лежит в диапазоне 18÷23 градуса.

Но когда на улице, например, отрицательная температура, то естественные термодинамические процессы стремятся все подвести под «общую планку», и тепло начинает из жилой зоны уходить. Тепловые потери – это совершенно нормальное с точки зрения физики явление. Вся система утепления жилья направлена на максимальное снижение таких потерь, но полностью их устранить невозможно. А отсюда вывод — отопление дома как раз и предназначено для восполнения этих самых тепловых потерь.

От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.

Как определиться с ними их количественно?

Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².

Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?

Так что лучше применить иной, более «скрупулезный» метод подсчета, в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора.

Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.

И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.

Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.

Ниже расположен калькулятор, а под ним будут размещены необходимые краткие пояснения по работе с программой.

Калькулятор расчета необходимой тепловой мощности для отопления помещений

Пояснения по проведению расчетов

Последовательно уносим данные в поля калькулятора.

  • Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.

Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.

  • Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
  • Следующая группа данных учитывает особенности расположения помещения:

Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).

Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.

Главный редактор проекта Stroyday.ru. Инженер.

— Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.

— Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.

— Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.

  • Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
  • Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.

Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.

Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.

По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.

А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: