Скорость воздуха в воздуховоде: способы определения

Скорость воздуха в воздуховоде: расчеты и измерения

Любая вентиляционная сеть состоит из каналов, оборудования и фасонных элементов. Для создания необходимого воздухообмена, важным параметром является не только производительность приточно-вытяжных установок и конфигурация сети, но и аэродинамический расчет воздуховодов.

  1. Материал и форма сечения
  2. Особенности перемещения газов
  3. Порядок проведения вычислений
  4. Методика расчетов
  5. Вычисление потерь на трение
  6. Настройка действующей системы вентиляции

Материал и форма сечения

Первое, что делается еще на этапе подготовки к проектированию – это подбирается материал для воздухопроводов, их форма, ведь при трении газов о стенки канала создается сопротивление их движению. Каждый материал имеет разную шероховатость внутренней поверхности, и следовательно при выборе воздуховодов будут различными показатели сопротивления движению воздушного потока.

В зависимости от специфики монтажа, качества воздушной смеси, которое будет перемещаться по системе и бюджету на проведение работ, выбирают нержавеющие, пластиковые или стальные каналы с оцинкованным покрытием, круглого или прямоугольного сечения.

Прямоугольными трубами пользуются, чаще всего, для сохранения полезного пространства. Круглые, напротив, достаточно громоздки, но имеют лучшие аэродинамические показатели и как следствие, шумность конструкции. Для правильного построения вентиляционной сети важными параметрами являются: площадь сечения воздухопроводов, расход воздуха и его скорость при движении по каналу.

На объем перемещаемых воздушных масс форма влияния не оказывает.

Особенности перемещения газов

Как уже говорилось выше, в расчетах, проводимых при построении вентиляции, участвуют три параметра: расход и скорость воздушных масс, а также площадь сечения воздухопроводов. Из этих параметров только один нормируется – это площадь сечения. Кроме жилых помещений и детских учреждений, допустимую скорость воздуха в воздуховоде СНиП не регламентирует.

В справочной литературе существуют рекомендации по перемещению газов, протекающих по вентиляционным сетям. Величины рекомендованы исходя из назначения, конкретных условий, возможных потерь давления и показателей шума. Таблица отражает рекомендованные данные для принудительных систем вентиляции.

Для естественного проветривания, движения газов принимается со значениями 0,2 – 1 м/с.

Порядок проведения вычислений

Алгоритм проведения вычислений таков:

  • Составляется аксонометрическая схема с перечислением всех элементов.
  • На основании схемы проводится расчет протяженности каналов.
  • Определяется расход на каждом ее участке. Каждый отдельный участок имеет единое сечение воздухопроводов.
  • После этого, проводятся вычисления скорости перемещения воздуха и давления в каждом отдельном участке системы.
  • Далее, вычисляются потери на трение.
  • Используя нужный коэффициент, вычисляется потери давления на местные сопротивления.

В процессе вычислений, на каждом участке воздухораспределительной сети получатся различные данные, которые необходимо уравнять с веткой наибольшего сопротивления при помощи диафрагм.

Методика расчетов

Изначально необходимо сделать расчет необходимой площади сечения воздуховода исходя из данных по ее расходу.

  • Площадь сечения воздуховода рассчитывается по формуле

LP – данные по перемещению необходимого объема воздуха на конкретном участке.

VT – рекомендованная или допустимая скорость воздуха в воздуховоде определенного назначения.

  • Получив искомые данные, производится подбор близкого к расчетному значению типоразмеру воздухопровода. Имея новые данные, производится вычисления реальной скорости перемещения газов на участке системы вентиляции, по формуле:

LP – расход газовой смеси.

– фактическая площадь сечения выбранного воздухопровода.

Аналогичные вычисления необходимо провести для каждого отдельного участка вентиляции.

Для правильного расчета скорости воздуха в воздуховоде, необходимо учитывать потери на трение и местные сопротивления. Одним из параметров, влияющих на величину потерь, является сопротивление на трение, который зависит от шероховатости материала воздухопровода. Данные о коэффициенте трения можно найти в справочной литературе.

Вычисление потерь на трение

Прежде всего следует учитывать следует учитывать форму воздухопровода и материал, из которого он изготовлен.

  • Для круглых изделий, формула расчета выглядит так:

Pтр = (x*l/d) * (v*v*y)/2g

Х – табличный коэффициент трения (зависит от материала);

I – длина воздухопровода;

D – диаметр канала;

V – темп движения газов на определенном участке сети;

Y – плотность перемещаемых газов (определяется по таблицам);

Читайте также:
Секреты выбора унитаза для дома. Покупаем с умом

G – 9,8 м/с 2

Важно! Если в воздухораспределительной системе используются прямоугольные каналы, то в формулу необходимо подставить эквивалентный сторонам прямоугольника (сечения воздуховода) диаметр. Вычисления можно произвести по формуле: dэкв = 2АВ/(А + В). Для перевода можно использовать и таблицу, представленную ниже.

  • Потери на местные сопротивления рассчитываются по формуле:

Q — сумма коэффициентов потерь на местные сопротивления;

V — скорость движения воздушных потоков на участке сети;

Y – плотность перемещаемых газов (определяется по таблицам);

G – 9,8 м/с 2

Важно! При построении воздухораспределительных сетей, очень важную роль играет правильный выбор дополнительных элементов, к которым относятся: решетки, фильтры, клапаны и пр. Эти элементы создают сопротивление перемещению воздушных масс. При создании проекта следует обратить внимание и на правильный подбор оборудования, ведь лопасти вентилятора и работа осушителей, увлажнителей, помимо сопротивления, создают и наибольший шум и сопротивление воздушным потокам.

Рассчитав потери воздухораспределительной системы, зная требуемые параметры движения газов на каждом ее участке, можно переходить к подбору вентиляционного оборудования и монтажу системы.

Настройка действующей системы вентиляции

Основным способом диагностики работы вентиляционных сетей является измерение скорости воздуха в воздуховоде, так как зная диаметр каналов несложно вычислить реальный расход воздушных масс. Приборы, которые используются для этого называют анемометрами. В зависимости от характеристик движения воздушных масс, применяют:

  • Механические устройства с крыльчаткой. Предел измерений 0,2 – 5 м/с;
  • Чашечные анемометры измеряют воздушный поток в пределах 1 – 20 м/с;
  • Электронные термоанемометры могут использоваться для проведения измерений в любых вентиляционных сетях.

На этих устройствах стоит остановиться более подробно. Электронные термоанемометры не требуют, как в применении аналоговых устройств, организации люков в каналах. Все измерения производятся посредством установки датчика и получении данных на экран, встроенный в прибор. Погрешности измерений у таких устройств не превышает 0,2%. Большинство современных моделей могут работать как от батареек, так и от питания 220 v. Именно поэтому для проведения пусконаладочных работ, профессионалы рекомендуют использовать именно электронные анемометры.

В качестве заключения: скорость движения воздушных потоков, расход воздуха и площадь сечения каналов являются важнейшими параметрами для проектирования воздухораспределительных и вентиляционных сетей.

Совет: В данной статье, в качестве наглядного примера была приведена методика аэродинамического расчета для участка воздухопровода вентиляционной системы. Проведение вычислительных операций – это достаточно сложный процесс, требующий знаний и опыта, а также учитывающий массу нюансов. Не занимайтесь расчетами самостоятельно, а доверьте это профессионалам.

Измерение воздушного потока

Приборы для измерения параметров воздушного потока в вентсистемах и газоходах.

При контроле работы отопительного оборудования и наладке систем вентиляции возникает вопрос: какой прибор использовать для измерения в воздуховодах (газоходах) таких параметров воздушного потока, как скорость и объемный расход?

На рынке представлено большое количество приборов: крыльчатые анемометры с различными диаметрами крыльчаток, термоанемометры, дифференциальные манометры с различными пневмометрическими (напорными) трубками, комбинированные приборы и так далее. Выбор прибора зависит от того, где проводятся измерения – на вентиляционной решетке или непосредственно в воздуховоде (газоходе), каков диапазон скоростей, температура, запыленность. В этой статье приводятся принципиальные различия между приборами, а также даны советы по выбору приборов в зависимости от задачи наладчика. Технические характеристики приведенных в статье приборов указаны приблизительно, так как существует множество моделей с различными параметрами.

Конструктивные особенности приборов

На рис. 1 показана линейка приборов для измерения параметров воздушного потока на примере одной из фирм-производителей, в порядке перечисления: термоанемометр, крыльчатый анемометр, дифференциальный манометр, пневмометрические трубки, комбинированный прибор со сменными зондами, воронки для определения объемного расхода.

Дифференциальный манометр (дифманометр) с напорной трубкой

При прохождении через струну потока воздуха она охлажда-ется, и меняется ее сопротивление, кото-рое пропорционально скорости воздуха.

Скорость определяется по числу оборотов вращающейся под действием потока воздуха крыльчатки.

Напорные трубки (Пито, НИИОГАЗ и др.) имеют два канала, соединяемые шлангами со штуцерами дифманометра. Они воспринимают полное и статическое давление в воздуховоде, по которым прибор измеряет динамический напор, на основе которого вычисляются скорость потока и объемный расход.

Читайте также:
Плавающая паркетная доска

Воздуховоды, решетки, аттестация рабочих мест. Приме-няется в основном для измерения малых скоростей

Диаметр крыльчатки:
D=16-25мм – воздуховоды,
D=60-100мм – решетки

Приблизи-тельный диапазон измерения

от 0,2 … 0,6 м/с
до 15 … 40 м/с

2-4 … 20-100 м/с
Скорость потока в соответствии с ГОСТ 17.2.4.06-90 должна быть не менее 4 м/с.
На практике минимальная скорость может быть от 2 до 10 м/с в зависимости от диапазона измерения давления.
Максимальная скорость ограничивается конструктивными особенностями трубки и техническими средствами проведения поверки.

Относительная погрешность по скорости

Средняя рабочая температура зонда (трубки)

Примечание. Функция усреднения, расчета объемного расхода, а в случае с дифманометром и функция расчета скорости могут быть заложены в прибор или отсутствовать.

Примечание. Дифференциальный манометр чаще всего более надежный и доступный прибор, нежели анемометры.

Рис. 1. Приборы измерения воздушного потока

Комбинированный (многофункциональный) прибор – совокупность перечисленных в таблице выше приборов. Представляет собой измерительный блок с возможностью подключения различных зондов: пневмометрических трубок, зондов-крыльчаток, термоанемометров, зондов скорости вращения, зондов температуры и влажности и др.

Воронки используются совместно с анемометрами для измерения объемного расхода на вентиляционных решетках и диффузорах. С воронками процесс измерения становится проще и точнее, т.к. проводится один замер, а не несколько в случае работы только с анемометром с последующим усреднением результатов. Необходимо, чтобы воронка полностью накрывала решетку (диффузор), то есть размер и форма воронки должны соответствовать размеру и форме решетки (диффузора). При использовании воронки в прибор вносится ее коэффициент, поэтому чаще всего анемометр можно использовать только той фирмы, которая производит и воронки к нему.

Примечание. Когда задача наладчика состоит из измерения нескольких параметров (например, давление, скорость, влажность, температура), удобнее всего воспользоваться комбинированным прибором, но это далеко не всегда дешевле, чем приобрести по отдельности дифманометр, анемометр, гигрометр и т.п.

Ограничения по использованию приборов.

Не рекомендуется использовать термоанемометры и трубки Пито для измерения в потоках воздуха с большой запыленностью, а термоанемометры также и в высокоскоростных потоках (более 20 м/с). В трубках Пито отверстие, воспринимающее полное давление, небольшого диаметра, и оно может засориться. А в термоанемометре может порваться чувствительный элемент – «обогреваемая струна». Большая запыленность может быть, например, при производстве цемента, муки, сахара, в металлургии, при наладке вентсистем в период строительства и др.

Нежелательно использование приборов вне диапазонов рабочих температур для измерительного блока и зондов. При высоких температурах рекомендуем использовать пневмометрические трубки из нержавеющей стали или высокотемпературные крыльчатки из специальных сплавов, нежели скоростные зонды, изготовленные с пластиковыми элементами. Например, при измерениях в газоходах, где чаще всего преобладают высокие температуры.

При проведении замеров необходимо, чтобы чувствительный элемент зонда был направлен строго навстречу потоку воздуха. При отклонении от этой оси увеличивается погрешность измерений, причем, чем больше угол отклонения, тем больше погрешность.

Измерение скорости потока и объемного расхода на вентиляционной решетке.

Для проведения измерений можно использовать любой анемометр или термоанемометр, но замеры будут быстрее, правильнее и точнее, если использовать анемометр с крыльчаткой большого диаметра D=60-100 мм, т.к. в этом случае диаметр крыльчатки будет сопоставим с размерами решетки. Для упрощения измерений и уменьшения погрешности можно использовать воронку вместе с прибором. Если необходимо проводить замеры в труднодоступных местах (например, под потолком), можно использовать либо телескопический зонд, либо зонд с удлинителем.

Анемометр с крыльчаткой большого диаметра D=60-100 мм – наиболее подходящий прибор, так как с ним проводится минимальное количество измерений, что дает более точный результат и минимум затраченного времени.

Читайте также:
Ночник настенный своими руками

Анемометр с крыльчаткой малого диаметра D=16-25мм и термоанемометр. При использовании этих приборов необходимо провести большее количество измерений, нежели при использовании анемометра с крыльчаткой большого диаметра. Это занимает больше времени, а также уменьшает точность измерений ввиду того, что увеличивается вероятность отклонения от оси измерений при каждом замере.

При использовании любого из вышеперечисленных приборов желательно, чтобы он имел функцию расчета объемного расхода, а также усреднения по времени и количеству замеров. В противном случае придется эти значения рассчитывать самостоятельно. Для начала необходимо провести измерения скорости потока в нескольких точках, распределенных по решетке, например, как показано на рис. 2, после чего рассчитывать среднюю скорость по формуле:

где vi [м/с] – величина скорости одного измерения, n – кол-во измерений, а из нее уже получать значение объемного расхода:

Q = vср x F x 3600 [м3/ч], где vср [м/с] – средняя скорость потока, F [м2] – площадь поперечного сечения на измеряемом участке (решетки).

Анемометры с функциями расчета и усреднения облегчают работу наладчика – автоматизируют процесс расчета значений параметров воздушного потока, хотя измерения по точкам сечения все равно приходиться проводить, а также вводить в прибор площадь сечения.

Рис. 2. Распределение точек замеров в прямоугольном и круглом сечении воздуховода (решетки) по ГОСТ 12.3.018-79.

Воронки и другие принадлежности. При использовании прибора с воронкой отпадает необходимость проведения множества замеров, что дает более точный результат измерений и экономит время. Проводится всего лишь один замер. В случае с диффузором без воронки вообще очень трудно обойтись. После установки воронки с анемометром на вентиляционную решетку (диффузор), как показано на рис. 3, однородный поток воздуха будет устремлен прямо на чувствительный элемент прибора, благодаря чему будет измерена средняя скорость. Анемометры с функцией расчета объемного расхода отображают его автоматически. При этом надо учесть, что у каждой воронки есть свой коэффициент преобразования, который необходимо предварительно ввести в прибор. Если прибор не рассчитывает объемный расход, то его можно вычислить самостоятельно по формуле:

Q = Kв x vср [м3/ч] , где vср [м/с] – средняя скорость потока, Kв – коэффициент воронки.

Иногда замеры необходимо производить в труднодоступных местах, когда решетки находятся на потолке или сразу под потолком. В этих случаях, чтобы не пользоваться стремянкой, можно использовать зонды с телескопической рукояткой или удлинители зондов.

Рис. 3. Установка воронки на вентиляционную решетку

Измерение скорости потока и объемного расхода непосредственно в воздуховоде (газоходе).

Перед работой надо убедиться, что в стенке воздуховода есть отверстие, диаметр которого соответствует диаметру измерительного зонда. Необходимо, чтобы это отверстие было на прямом участке воздуховода, так как в этом случае воздушный поток максимально однороден. Прямой участок должен быть длиной не менее пяти диаметров воздуховода. Точка замера выбирается с условием, что до нее должно быть расстояние, равное трем диаметрам воздуховода, и после нее – двум диаметрам.

Для проведения замеров используются термоанемометры, крыльчатые анемометры с малым диаметром крыльчатки D=16-25 мм и дифференциальные манометры с пневмометрическими трубками. Если в воздуховоде бывают малые скорости ( 80°С) используются высокотемпературные крыльчатки.

Измерения проводятся в тех же точках, что и в случае с вентиляционной решеткой. Примерное расположение точек замеров показано на рис. 2.

При использовании анемометров в зависимости от того, есть ли у прибора функция расчета объемного расхода и функция усреднения по времени и количеству замеров, искомые значения средней скорости и объемного расхода либо рассчитывает прибор, либо вычисляются самостоятельно по указанным выше формулам.

Дифференциальные манометры с пневмометрической трубкой используются при высоких температурах (> 80°С) и/или скоростях более 2 м/с. Приборы можно условно разделить на две группы: одни измеряют только перепад давлений (динамический напор), другие еще имеют функцию усреднения и рассчитывают скорость потока и объемный расход. Обращаем внимание, что у пневмометрических трубок, также как и у воронок, есть коэффициенты, которые также предварительно необходимо ввести в прибор. Кроме того, в прибор также надо вводить площадь сечения воздуховода и температуру потока. Можно использовать дифманометры с автоматическим каналом ввода температуры и пневмометрические трубки со встроенной термопарой для упрощения вычислений. Не советуем использовать пневмометрическую трубку Пито в запыленных потоках, в этом случае лучше проводить измерения горячей струной

Читайте также:
Размер детского одеяла

Измерения проводятся в тех же точках, что и в случае с вентиляционной решеткой. Примерное расположение точек замеров показано на рис. 2.

Для дифманометров из первой группы, которые не имеют функции расчета скорости потока и объемного расхода (например, ДМЦ-01О), упрощенные формулы для расчета искомых значений приведены ниже. Точные формулы с расчетом плотности среды в общем случае см. в ГОСТ 17.2.4.06-90.

Динамический напор, измеряемый прибором:

Pd = Pt – Ps [Па или мм вод.ст.], где Pt – полное давление, Ps – статическое давление.

Скорость потока в точке замера:

– для Pdi в [Па] и

– для Pdi в [мм вод.ст.],

где Pdi – динамический напор в точке замера, Тр [°С] – температура

среды, Кт – коэффициент пневмометрической трубки.

Среднее значение скорости потока:

– где v i [м/с] – величина скорости одного измерения, n – кол-во измерений.

Объемный расход:

Q = vср x F x 3600 [м3/ч], где vср [м/с] – средняя скорость потока, F [м2] – площадь поперечного сечения на измеряемом участке.

Блок-схема выбора прибора.

Популярные приборы.

Наша компания на протяжении более 20 лет профессионально занимается приборами для измерения параметров воздушного потока: поставка, продажа, поверка, ремонт. Мы готовы проконсультировать и помочь в выборе прибора. Но из множества приборов, представленных на рынке, хотелось бы выделить наиболее популярные по итогам продаж. По мнению наших многочисленных клиентов, именно эти приборы имеют хорошие показатели по отношению «цена / качество».

Интернет-магазин контрольно-измерительных приборов и освещения ” Мир приборов “

Ознакомьтесь с нашим ассортиментом в каталоге

Решения для жизни и работы!

Представленная информация на сайте носит справочный характер и не является публичной офертой.
Технические параметры (спецификация) и комплект поставки товара могут быть изменены производителем без предварительного уведомления.

г. Санкт-Петербург , Комендантский пр., д. 4 к. 2,
стр. А, офис 0В2 , 197227
График работы с 9:30 до 19:00

Расчет скорости воздуха в воздуховоде

Расчет скорости воздуха в воздуховоде

В этой статье мы дадим ответ на вопрос — как правильно рассчитать скорости течения воздуха в воздуховодах различной формы.

Здесь приведены формулы расчета скорости воздуха и давления в воздуховоде (круглого или прямоугольного сечения) в зависимости от расхода воздуха и площади сечения. Для быстрого расчета можно воспользоваться онлайн-калькулятором.

Формула расчета скорости воздуха в метрической системе:


где W — скорость потока, м/час
Q — расход воздуха, м 3 /час
S — площадь сечения воздуховода, м 2

Простой способ расчета скорости воздуха в воздуховоде

Для расчета величины скорости воздуха нужно объем перемещаемого воздуха в м3/ч разделить на 3600 (количество секунд в часе) и разделить на площадь сечения воздуховода, либо введите значения в поля ниже.

Примеры расчета скорости воздуха в квадратном воздуховоде

Пример № 1 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,2 = 0,69 м/с

Пример № 2 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,2 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде прямоугольного сечения

Пример № 3 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод прямоугольный 200 мм на 400 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,4 = 0,35 м/с

Читайте также:
Перегородка из газогребневых плит своими руками

Пример № 4 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 1,74 м/с

Пример № 5 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде круглого сечения

Пример № 6 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод круглый диаметром 200 мм

Скорость воздуха равна 100 / 3600 / (3,14 * 0,2 * 0,2/4) = 0,88 м/с

Пример № 7 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод круглый диаметром 300 мм

Скорость воздуха равна 500 / 3600 / (3,14 * 0,3 * 0,3/4) = 1,96 м/с

Пример № 8 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод круглый диаметром 400 мм

Скорость воздуха равна 1000 / 3600 / (3,14 * 0,4 * 0,4/4) = 2,21 м/с

Готовые таблицы определения скорости воздуха в воздуховоде

Для определения расчетной скорости воздуха в воздуховодах можно использовать готовые таблицы. Такие таблицы не сложно найти в открытых источниках информации. Скоростные характеристики важны для расчета эффективности работы системы вентиляции.

Таблица расчета скорости течения воздуха в круглом воздуховоде.

Таблица расчета скорости течения воздуха в прямоугольном воздуховоде.

Рекомендуемая скорость воздуха в вентиляционных воздуховодах

Скорость движения воздушных масс в каналах не ограничивается и не нормируется, ее следует принимать по результатам расчета, руководствуясь соображениями экономической целесообразности.

Рекомендуемая скорость воздуха для различных систем вентиляции:

  • для общеобменных систем вентиляции с сечением воздуховодов до 600×600 — менее 4 м/с;
  • для систем вентиляции с сечением воздуховодов более 600×600 — менее 6 м/с;
  • для систем дымоудаления и специфических систем вентиляции — менее 10 м/с..

Правильный расчет скорости воздуха позволяет построить эффективную систему вентиляции!

Определение скорости воздуха в воздуховоде

Для разработки будущей системы вентиляции немаловажно определиться с габаритами каналов, которые нужно проложить в тех или иных условиях. Во вновь строящемся здании это сделать проще, еще на стадии проектирования расположив все инженерные сети и технологическое оборудование в соответствии с нормативными документами. Другое дело, когда идет реконструкция или техническое перевооружение производства, тут требуется прокладка трасс воздуховодов с учетом существующих условий. Размеры каналов могут сыграть большую роль, а чтобы их правильно вычислить, необходимо принять оптимальную скорость движения воздуха.

Таблица скорость воздуха в воздуховоде.

Порядок выполнения расчета

Имеется еще один вариант устройства приточно-вытяжной вентиляции с механическим побуждением. Заключается он в том, чтобы использовать существующие воздухопроводы для новых вентиляционных установок. Тут также не обойтись без просчета скорости потока в этих старых трубопроводах на основании обследований и измерений.

Общая формула расчета величины скорости воздушных масс (V, м/с) происходит из формулы вычисления расхода приточного воздуха (L, м.куб/ч) в зависимости от размера площади сечения канала (F, м.кв.):

L = 3600 x F x V

Примечание: умножение на цифру 3600 необходимо для приведения в соответствие единиц времени (часы и секунды).

Процесс замера скорости воздуха.

Соответственно, формулу скорости потока можно представить в следующем виде:

Рассчитать площадь сечения существующего канала не составляет труда, а если ее нужно вычислить? Тогда и приходит на помощь способ подбора размеров воздуховода по рекомендуемым скоростям воздушных потоков. Изначально из трех параметров, участвующих в расчетах, на данном этапе четко должен быть известен один – это количество воздушной смеси (L, м.куб/ч), необходимое для вентиляции того или иного помещения. Оно определяется в соответствии с нормативной базой в зависимости от назначения строения и его внутренних комнат. Выполняется расчет по числу людей в каждом помещении или по величине выделяющихся вредных веществ, излишков тепла или влаги. После этого нужно принять предварительное значение скорости воздуха в воздуховодах, сделать это можно воспользовавшись таблицей рекомендуемых скоростей.

Читайте также:
Сварка пластиковых труб своими руками
Тип воздухопровода Основная магистраль Разводящие каналы Распределение по помещению Раздающие приточные устройства Вытяжные панели, зонты, решетки
Рекомендуемая скорость 6 – 8 м/с 4 – 5 м/с 1,5 – 2 м/с 1 – 3 м/с 1,5 – 3 м/с

Подбор габаритов канала

Выбрав вид воздухопровода и приняв расчетную скорость, можно определить сечение будущего канала по формулам, приведенным выше. Если планируется его изготовить круглой формы, то диаметр посчитать просто:

Расчет воздуховодов для равномерной раздачи воздуха.

  • D – диаметр круглого канала в метрах;
  • F – площадь его поперечного сечения в м.кв.;
  • π = 3.14

Далее необходимо обратиться к нормативным документам, которые определяют стандартные размеры воздуховодов круглой формы, и выбрать среди них ближайший к расчетному диаметр. Это делается для того, чтобы унифицировать производство элементов вентиляционных систем, номенклатура изделий которых и так достаточно велика. Понятно, что принятый по СНиП новый диаметр будет иметь и другое сечение, поэтому потребуется пересчитать его в обратной последовательности и выйти на значение действительной скорости потока воздушных масс в стандартном канале. При этом величина расхода L по-прежнему должна участвовать в вычислениях как константа. Таким методом просчитывается каждый отдельно взятый участок вентиляционной системы, а разбивка на участки производится по одному неизменному признаку – количеству воздуха (расходу).

Если предполагается выполнить прокладку каналов прямоугольной конфигурации, то нужно подобрать размеры сторон такими, чтобы их произведение дало площадь сечения, которая была вычислена ранее. Нормативное ограничение к таким каналам одно:

Здесь параметры А и В – размеры сторон в метрах. Простыми словами, нормами запрещается выполнять прямоугольные трубопроводы слишком узкими при большой высоте или чересчур низкими и широкими. На таких участках сопротивление потоку будет слишком большим и вызовет экономически необоснованные энергозатраты. Остальной просчет действительной скорости воздуха в воздуховоде производится так, как было описано выше.

Рекомендации по подбору в стесненных условиях

При разработке вентиляционных схем нужно руководствоваться одним правилом, которое просматривается и в таблице: скорость воздуха на каждом участке системы должна возрастать по мере приближения к вентиляционной установке. Если результаты вычислений дают показатели скоростей на каких-нибудь участках, не соответствующие данному правилу, то такая схема работать не будет или же в реальных условиях величины скорости потоков будут далеки от расчетных. Решить вопрос можно изменением размеров воздухопроводов на проблемных участках в сторону уменьшения или увеличения.

Формула определения воздухообмена по кратности.

При выполнении строительных работ по реконструкции или техническому перевооружению производственных зданий часто возникает ситуация, когда для устройства вентиляционных каналов просто не остается свободного места, поскольку насыщенность технологическим оборудованием и трубопроводами в помещении слишком велика. Тогда приходится прокладывать трассы в самых труднодоступных местах либо пересекать перекрытия и стены несколько раз. Все эти факторы могут значительно увеличить сопротивление таких участков. Получается замкнутый круг: чтобы пройти узкие места, нужно уменьшить размер и увеличить скорость, что резко повысит сопротивление участка. Уменьшить скорость воздуха нельзя, потому что тогда увеличатся габариты канала и он не пройдет где нужно. Выход из ситуации заключается в уменьшении габаритов и наращивании мощности вентилятора либо разветвлении воздухопровода на несколько параллельных рукавов.

Если возникает необходимость просчета существующей системы приточных или вытяжных каналов для использования их с другими параметрами производительности по воздуху, то вначале потребуется снять натурные замеры каждого участка воздуховода с разными габаритами. Затем, используя новые значения расходов воздуха, определить действительную скорость потока и сравнить полученные значения с таблицей. На практике допускается превышение рекомендованных скоростей на 3-5 м/с в магистральных, разводящих каналах и ответвлениях. В приточных и вытяжных устройствах увеличение скорости приводит к повышению уровня шума, поэтому недопустимо. Если эти условия соблюдаются, старые воздухопроводы пригодны к использованию после соответствующего их обслуживания.

Правильность всех выполненных расчетов вентиляционной системы покажут пусконаладочные работы, в процессе которых производятся замеры скорости воздуха в каналах через специальные лючки.

Также с помощью измерительных приборов – анемометров – измеряется скорость потока на входе или выходе вентиляционных решеток. Если показатели не соответствуют расчетным, выполняется регулировка всей системы с помощью устанавливаемых дополнительно дроссельных заслонок или диафрагм.

Читайте также:
Система отопления в многоэтажном доме: виды, нормативы обогрева многоквартирных типов жилищ

Как определить расход воды по диаметру трубы и давлению?

Вычислять водорасход, учитывая диаметр трубы и давление, следует еще не этапе планировки дома. Это поможет выбрать оптимальный трубный диаметр (сечение), чтобы напор был нормальным, но чтобы расход воды не превышал норму.

Для вычисления водорасхода можно воспользоваться различными формулами, а также ознакомиться с таблицей расхода воды по диаметру трубы и давлению, представленной ниже в статье..

Зависимость водного давления от диаметра трубопровода

Между давлением водного потока и трубным диаметром наблюдается прямая зависимость, описываемая законом Бернулли.

При пропускании постоянного водного потока через трубы с различным сечением обнаруживается, что в узких частях давление меньше, чем в широких.

При переходе воды из широкой части в узкую, давление снижается, и наоборот.

В трубах с различным сечением за одинаковый промежуток времени протекает равный объем воды. Поэтому на широких участках она течет медленнее, чем по узким.

Таблица соотношения

Водорасход напрямую зависит от пропускной способности. Это такая величина, которая показывает максимальный объем, проходящий через систему за определенный временной промежуток и при определенном давлении.

Для труб с разным диаметром такая величина разнится. Подробная информация указана в таблице ниже:

Когда нужно проводить вычисления?

Выполнять вычисления необходимо при выборе труб для водопровода. Диаметр должен быть подходящим, чтобы избежать чрезмерного водорасхода и обеспечить нормальный напор.

Такая необходимость появляется при проектировании дома и подведении к нему коммуникаций. При выборе трубы с оптимальным сечением для водопровода нужно обязательно выполнять ряд расчетов. Необходимо узнать максимальные объемы необходимой воды в доме за минуту.

Исходя из полученных результатов, нужно приобрести трубу с таким сечением, чтобы этого было достаточно для одновременной работы всех устройств и кранов.

Пошаговая инструкция, как рассчитать водорасход

Произвести подсчеты можно при помощи таблиц. Но полученные результаты будут неточными. Поэтому лучше проводить расчеты на месте, учитывая скорость потока, материал трубопроводных систем и прочие характеристики трубопровода.

Проще всего рассчитать объем расходуемой H2O по следующей формуле:

  • q – расход воды (л/с);
  • V – скорость течения (м/с);
  • d – диаметр (см).

Использовать эту формулу можно и для поиска других неизвестных. Если известен диаметр и расход воды, можно определить скорость потока. А если известны V и q, можно узнать диаметр.

В большинстве стояков напор водного потока равняется 1,5-2,5 атмосфер. А скорость потока обычно составляет 0,8-1,5 м/с. Может быть установлен дополнительный нагнетатель, который меняет параметры внутри системы. Все данные о нем должны быть указаны в техпаспорте.

Минимальное давление в системе должно составлять 1,5 атмосфер – этого достаточно для работы стиральной машины и посудомойки. Чем оно выше, тем быстрее вода движется по трубам, поэтому водорасход повышается.

Для получения более точных результатов применяется формула Дарси-Вейсбаха, которая учитывает возможные изменения напора воды, что приводит к повышению или снижению давления.

  • ΔP – потеря давления на сопротивлении движения потока;
  • λ – показатель потерь на трение по всей длине;
  • D – сечение трубы;
  • V — скорость течения;
  • L – длина трубопровода;
  • g – константа = 9,8 м/с2;
  • ϸ — вязкость потока.

Такую формулу обычно используют для выполнения сложных расчетов гидродинамики. В остальных случаях применяются упрощенные варианты.

Частный случай расчета водорасхода – через отверстие крана. Применяется формула:

  • Q – водорасход;
  • S – площадь окружности (отверстия крана), определяется по формуле S= π*r2;
  • V – скорость течения, если она неизвестна, определить ее можно, исходя из формулы V=2g*h, где g – константа, h – высота водного столба над отверстием крана.
Читайте также:
Оформление лоджии и балкона и варианты дизайна

Правила расчета

При выполнении вычислений необходимо учитывать следующие правила:

  1. Следить за правильностью величин. Если одно значение исчисляется в м/с, то другое должно измеряться в л/с (не в кг/час). Иначе произведенные расчеты будут неверными.
  2. Применять правильные значения констант.
  3. Учитывать данные нагнетателя системы, если он используется. Вся информация о его влиянии на параметры системы указывается в техническом паспорте.
  4. Промежуточные вычисления рекомендуется проводить с точными величинами, а конечный результат можно округлить (лучше в большую сторону).

Чтобы облегчить расчеты, можно воспользоваться калькуляторами в режиме онлайн, в которые достаточно только ввести все известные данные.

Заключение

Объем расходуемой воды напрямую зависит от трубного диаметра и давления внутри системы. Чем больше давление, тем быстрее будет протекать вода, что приведет к большому водорасходу. Чем меньше диаметр трубы, тем выше сопротивление воды и меньше скорость ее течения.

Если выбрать неподходящий d, водный напор в системе может быть снижен. Поэтому при установке водных коммуникаций нужно обязательно проводить расчеты. Иначе в будущем могут появиться проблемы с водорасходом.

Какой диаметр трубы нужен в зависимости от расхода и давления

Для того чтобы правильно смонтировать конструкцию водопровода, начиная разработку и планирование системы, необходимо рассчитать расход воды через трубу.

От полученных данных зависят основные параметры домашнего водовода.

В этой статье читатели смогут познакомиться с основными методиками, которые помогут им самостоятельно выполнить расчет своей водопроводной системы.

Как рассчитать необходимый диаметр трубы

Цель расчета диаметра трубопровода по расходу: Определение диаметра и сечения трубопровода на основе данных о расходе и скорости продольного перемещения воды.

Выполнить такой расчет достаточно сложно. Нужно учесть очень много нюансов, связанных с техническими и экономическими данными. Эти параметры взаимосвязаны между собой. Диаметр трубопровода зависит от вида жидкости, которая будет по нему перекачиваться.

Однако увеличение движения потока вызовет потери напора, которые требуют создание дополнительной энергии, для перекачки. Если очень сильно ее уменьшить, могут появиться нежелательные последствия.

С помощью формул ниже можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода жидкости.

Когда выполняется проектирование трубопровода, в большинстве случаев, сразу задается величина расхода воды. Неизвестными остаются две величины:

  • Диаметр трубы;
  • Скорость потока.

Сделать полностью технико-экономический расчет очень сложно. Для этого нужны соответствующие инженерные знания и много времени. Чтобы облегчить такую задачу при расчете нужного диаметра трубы, пользуются справочными материалами. В них даются значения наилучшей скорости потока, полученные опытным путем.

Итоговая расчетная формула для оптимального диаметра трубопровода выглядит следующим образом:

d = √(4Q/Πw)
Q – расход перекачиваемой жидкости, м3/с
d – диаметр трубопровода, м
w – скорость потока, м/с

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Читайте также:
Рейтинг лучших пылесосов от Dyson: обзор топовой десятки моделей на сегодняшнем рынке

Скорость воды в трубопроводе формула

Объёмный расход V (60м³/час или 60/3600м³/сек) рассчитывается как произведение скорости потока w на поперечное сечение трубы S (а поперечное сечение в свою очередь считается как S=3.14 d²/4): V = 3.14 w d²/4. Отсюда получаем w = 4V/(3.14 d²). Не забудьте перевести диаметр из миллиметров в метры, то есть диаметр будет 0.159 м.

Формула расхода воды

В общем случае методология измерения расхода воды в реках и трубопроводах основана на упрощённой форме уравнения непрерывности, для несжимаемых жидкостей:

Расход воды через трубу таблица

Зависимость расхода от давления

Нет такой зависимости расхода жидкости от давления, а есть — от перепада давления. Формула выводится просто. Имеется общепринятое уравнение перепада давления при течении жидкости в трубе Δp = (λL/d) ρw²/2, λ — коэффициент трения (ищется в зависимости от скорости и диаметра трубы по графикам или соответствующим формулам), L — длина трубы, d — ее диаметр, ρ -плотность жидкости, w — скорость. С другой стороны, есть определение расхода G = ρwπd²/4. Выражаем из этой формулы скорость, подставляем ее в первое уравнение и находим зависимость расхода G = π SQRT(Δp d^5/λ/L)/4, SQRT — квадратный корень.

Коэффициент трения ищется подбором. Вначале задаете от фонаря некоторое значение скорости жидкости и определяете число Рейнольдса Re=ρwd/μ, где μ — динамическая вязкость жидкости (не путайте с кинематической вязкостью, это разные вещи). По Рейнольдсу ищете значения коэффициента трения λ = 64/Re для ламинарного режима и λ = 1/(1.82 lgRe — 1.64)² для турбулентного (здесь lg — десятичный логарифм). И берете то значение, которое выше. После того, как найдете расход жидкости и скорость, надо будет повторить весь расчет заново с новым коэффициентом трения. И такой перерасчет повторяете до тех пор, пока задаваемое для определения коэффициента трения значение скорости не совпадет до некоторой погрешности с тем значением, что вы найдете из расчета.

Как рассчитать расход воды по диаметру трубы – теория и практика

Как несложным путем высчитать расход воды по диаметру трубы? Ведь обращение к коммунальщикам с предварительно составленной схемой всех водопроводных коммуникаций в районе дело довольно хлопотное.

Зачем нужны подобные расчеты

При составлении плана по возведению большого коттеджа, имеющего несколько ванных комнат, частной гостиницы, организации пожарной системы, очень важно обладать более-менее точной информацией о транспортирующих возможностях имеющейся трубы, беря в учет ее диаметр и давление в системе. Все дело в колебаниях напора во время пика потребления воды: такие явления довольно серьезно влияют на качество предоставляемых услуг.

Кроме того, если водопровод не оснащен водосчетчиками, то при оплате за услуги коммунальных служб в расчет берется т.н. «проходимость трубы». В таком случае вполне логично выплывает вопрос о применяемых при этом тарифах.

При этом важно понимать, что второй вариант не касается частных помещений (квартир и коттеджей), где при отсутствии счетчиков при начислении оплаты учитывают санитарные нормы: обычно это до 360 л/сутки на одного человека.

От чего зависит проходимость трубы

От чего же зависит расход воды в трубе круглого сечения? Складывается впечатление, что поиск ответа не должен вызывать сложностей: чем большим сечением обладает труба, тем больший объем воды она сможет пропустить за определенное время. А простая формула объема трубы позволит узнать и это значение. При этом вспоминается также давление, ведь чем выше водяной столб, тем с большей скоростью вода будет продавливаться внутри коммуникации. Однако практика показывает, что это далеко не все факторы, влияющие на расход воды.

Кроме них, в учет приходится брать также следующие моменты:

  1. Длина трубы. При увеличении ее протяженности вода сильнее трется об ее стенки, что приводит к замедлению потока. Действительно, в самом начале системы вода испытывает воздействие исключительно давлением, однако важно и то, как быстро у следующих порций появится возможность войти внутрь коммуникации. Торможение же внутри трубы зачастую достигает больших значений.
  2. Расход воды зависит от диаметра в куда более сложной степени, чем это кажется на первый взгляд. Когда размер диаметра трубы небольшой, стенки сопротивляются водному потоку на порядок больше, чем в более толстых системах. Как результат, при уменьшении диаметра трубы снижается ее выгода в плане соотношения скорости водного потока к показателю внутренней площади на участке фиксированной длины. Если сказать по-простому, толстый водопровод гораздо быстрее транспортирует воду, чем тонкий.
  3. Материал изготовления. Еще один важный момент, напрямую влияющий на быстроту движения воды по трубе. К примеру, гладкий пропилен способствует скольжению воды в гораздо больше мере, чем шероховатые стальные стенки.
  4. Продолжительность службы. Со временем на стальных водопроводах появляется ржавчина. Кроме этого для стали, как и для чугуна, характерно постепенно накапливать известковые отложения. Сопротивляемость водному потоку трубы с отложениями гораздо выше, чем новых стальных изделий: эта разница иногда доходит до 200 раз. Кроме того, зарастание трубы приводит к уменьшению ее диаметра: даже если не брать в расчет возросшее трение, проходимость ее явно падает. Важно также заметить, что изделия из пластика и металлопластика подобных проблем не имеют: даже спустя десятилетия интенсивной эксплуатации уровень их сопротивляемости водным потокам остается на первоначальном уровне.
  5. Наличие поворотов, фитингов, переходников, вентилей способствует дополнительному торможению водных потоков.
Читайте также:
Оформление лоджии и балкона и варианты дизайна

Все вышеперечисленные факторы приходится учитывать, ведь речь идет не о каких-то маленьких погрешностях, а о серьезной разнице в несколько раз. В качестве вывода можно сказать, что простое определение диаметра трубы по расходу воды едва ли возможно.

Новая возможность расчетов расхода воды

Если использование воды осуществляется посредством крана, это значительно упрощает задачу. Главное в таком случае, чтобы размеры отверстия излияния воды были намного меньше диаметра водопровода. В таком случае применима формула расчета воды по сечению трубы Торричелли v^2=2gh, где v — быстрота протекания сквозь небольшое отверстие, g — ускорение свободного падения, а h — высота столба воды над краном (отверстие, имеющее сечение s, за единицу времени пропускает водный объем s*v). При этом важно помнить, что термин «сечение» применяется не для обозначения диаметра, а его площади. Для ее расчета используют формулу pi*r^2.

Если столб воды имеет высоту в 10 метров, а отверстие – диаметр 0,01 м, расход воды через трубу при давлении в одну атмосферу вычисляется таким образом: v^2=2*9.78*10=195,6. После извлечения квадратного корня выходит v=13,98570698963767. После округления, чтобы получить более простой показатель скорости, получается 14м/с. Сечение отверстия, имеющее диаметр 0,01 м, вычисляется так: 3,14159265*0,01^2=0,000314159265 м2. В итоге выходит, что максимальный расход воды через трубу соответствует 0,000314159265*14=0,00439822971 м3/с (немного меньше, чем 4,5 литра воды/секунду). Как можно увидеть, в данном случае расчет воды по сечению трубы провести довольно просто. Также в свободном доступе имеются специальные таблицы с указанием расходы воды для самых популярных сантехнических изделий, при минимальном значении диаметра водопроводной трубы.

Как уже можно понять, универсального несложного способа, чтобы вычислить диаметр трубопровода в зависимости от расхода воды, не существует. Однако определенные показатели для себя вывести все-же можно. Особенно это касается случаев, если система обустроена из пластиковых или металлопластиковых труб, а потребление воды осуществляется кранами с малым сечением выхода. В отдельных случаях такой метод расчета применим на стальных системах, но речь идет прежде всего о новых водопроводах, которые не успели покрыться внутренними отложениями на стенках.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: