Нивелиры оптические: устройство и принцип работы

Оптические нивелиры, классификация и их устройство

Одними из самых известных и популярных в своей области, простых в обращении и точных геодезических приборов считаются оптические нивелиры. Основной принцип, задействованный в конструкциях вообще всех видов нивелиров, заключается в передаче на расстояние горизонтального луча, необходимого для его практического применения. Этот принцип применяется через осуществление взаимосвязи геометрических условий и оптической системы в конструкции прибора. По всей видимости, и способ измерений с применением этого инструмента получил его наименование, а именно геометрическое нивелирование.

Оптические нивелиры позволяют нам:

  • измерять превышение между точками относительно горизонтального луча, проходящего через визирную ось трубы;
  • определять отклонение от горизонтального луча измеряемых плоскостей и всевозможных поверхностей;
  • устанавливать высотные отметки точек относительно отсчетной системы координат (абсолютной, условной).

Классификация оптических нивелиров

В современном приборостроении и геодезии соответственно выпускаются и применяются оптические нивелиры, которые можно позволить классифицировать на два вида:

  • оптико-механические;
  • оптико-электронные, еще их называют цифровыми.

И в тех и других устройствах существующие системы наблюдения и ориентирования имеют одинаковую связь между оптикой и геометрией. Ориентирование обеспечивается через визирную ось относительно отвесной линии. Наблюдение осуществляется через зрительную трубу и механизм наведения. А вот отличие между ними заключается в отсчетных системах соответственно визуальной и электронной.

Оптические нивелиры также различают по степени точности. Среди них можно выделить:

  • высокоточные;
  • точные;
  • технической точности.

В соответствии с государственными стандартами к высокоточной группе относятся приборы со среднеквадратической погрешностью не более 0,5мм при проведении одного километра двойного хода. К ним относятся ранее изготовленные оптико-механические нивелиры Ni-002 (Цейс), Н-0,5 и современные цифровые, например SDL-1X (SOKKIA).

К точным нивелирам относятся инструменты со среднеквадратической погрешностью (СКП) до 3-х мм и наименованиями Н-3, Н-3К и многие современные марки ведущих иностранных производителей.

Технической точности считаются инструменты со среднеквадратической ошибкой не более десяти миллиметров, например, такой, как Н-10КЛ.

Еще, все производимые сегодня оптические нивелиры в зависимости от приведения визирного луча к горизонтали можно разделить на два вида:

  • с цилиндрическим установочным уровнем визирной оси, которая выводится в горизонтальное положение так называемым элевационным винтом, соединенным с уровнем (Н-3);
  • с самоустанавливающимся визирным лучом при помощи компенсаторов, автоматически выставляющих его в горизонтальную плоскость (Н-3К).

Все современные приборы сейчас изготавливаются большей частью с компенсаторами, позволяющими увеличивать производительность труда полевых работ.

Устройство оптического нивелира

Классическое устройство нивелира можно показать на такой широко используемой марке приборов как Н-3. В его составе необходимо выделить основные узлы, показанные на рисунке.

Рис. 1. Устройство.

На рисунке можно увидеть следующие детали и узлы оптического нивелира:

  • зрительная труба, предназначенная для наведения на рейку (1);
  • окуляр, часть оптической системы, предназначенная для наблюдения (2);
  • объектив, часть оптической системы, предназначенная для получения увеличенного изображения объектов (3);
  • трегер или другими словами подставка для размещения в нем самого прибора (4);
  • подъемные винты, служащие приведению инструмента в рабочее состояние, совпадающее с отвесной линией (5);
  • пластина, нижняя часть подставки, предающая жесткости всей ее конструкции и устойчивости подъемных винтов (6);
  • закрепительный винт прибора, предназначенный для фиксации зрительной трубы после грубого наведения на рейку (7);
  • цилиндрический уровень, соединенный с трубой и служащий для установления визирного луча в горизонтальное положение (8).
  • место установки юстировочных винтов, предназначенных для исправления положения цилиндрического уровня (9);
  • визир, расположенная сверху трубы деталь для ориентировочного наведения на рейку (10);
  • фокусировка (кремальера), предназначенный для фокусирования (придания резкости изображению) механизм, (11);
  • наводящий (микрометренный) винт, служащий точному наведению зрительной трубы на рейку (12);
  • круглый уровень, показывающий положение прибора относительно отвесной линии (13);
  • юстировочные винты круглого уровня, для исправления положения уровня (14);
  • элевационный винт, выводящий цилиндрический уровень на середину и связывающий его с визирным лучом (15).

Основные геометрические условия

Для работоспособности оптического нивелира требуется соблюдение геометрических условий, предусмотренных конструкцией самого прибора. Геометрическая схема прибора, в упрощенном виде представлена на приведенном ниже рисунке.

Рис.2. Геометрическая схема.

Элементы геометрической схемы представляют совокупность невидимых вертикальных и горизонтальных линий основных узлов и деталей инструмента:

  • (N – N) – вертикальная линия, представляющая ось круглого уровня;
  • (V – V) – линия, изображающая вертикальную ось вращения прибора;
  • (Z – Z) – визирный луч, проходящий через центр окуляра и объектива;
  • (L – L) – горизонтальная ось цилиндрического уровня;
  • (K – K) – вертикальная ось автоматического компенсатора.

Основные детали и конструкции оптических нивелиров геометрически связаны между собой и их элементами (осями). Все конструктивные геометрические условия приборов проверяются во время проведения поверок нивелира. К ним относятся:

  • поверка круглого уровня, ее условие состоит в параллельности оси круглого уровня и невидимой оси вращения прибора;
  • поверка сетки нитей, ее условие состоит в вертикальности оси сетки нитей;
  • поверка по определению угла і, суть которой заключается в параллельности визирного луча и горизонтальной оси цилиндрического установочного уровня;
  • поверка компенсатора, ее условие состоит в горизонтальности визирного луча.

Дополнительные принадлежности

Для проведения измерений с помощью оптических нивелиров используются дополнительные принадлежности:

  • штативы;
  • рейки.

Штативы необходимы для установки и жесткого крепления конструкции прибора, приведение его в рабочее положение и собственно выполнение измерений. Нивелирные штативы бывают деревянные, фиберглассовые, алюминиевые и обычно они легкие по весу и с меньшими головками крепления.

Рейки могут быть различной длины, изготовлены из разного материала с разграфленной шкалой на их поверхностях. В обозначения нивелирных реек, например РН-3-3000СП, входят:

  • сокращенное наименование (РН – рейка нивелирная);
  • первая цифра (3), означающая точность измерений в мм;
  • второе число (3000) означает длину в мм;
  • СП – сокращение означающее: складную конструкцию и прямое изображение.
Читайте также:
Плюсы ондулина и жидкой кровли

Существуют различные виды реек:

  • деревянные складные двухсторонние;
  • алюминиевые выдвижные, с накладным круглым уровнем ;
  • инварные, повышенной точности.

Длина реек колеблется в пределах от одного до пяти метров. Деления на них бывают миллиметровые с одной стороны и сантиметровые Е-образные с другой или с обеих сторон сантиметровыми одновременно, но с чередованием цвета (красная, черная). Они могут быть штриховыми и с инварной проволокой для цифровых нивелиров. Вся градуировка на рейках, нанесенная краской, перед вводом ее в эксплуатацию должна быть исследована и соответствовать требованиям предельных отклонений метрового отрезка и длин делений шкал.

Оптический нивелир: основы работы и настройка своими руками

Нивелир вопреки распространенному мнению очень прост в использовании. Об устройстве, начальных основах применения и полевой проверке прибора – наша заметка ниже.

Купить нивелир можно в нашем магазине посетив его лично или заказав доставку.
Если Вам требуется поверка и ремонт нивелиров – к вашим услугам наш сервисный центр!

Что такое нивелир и как он работает?
Оптический нивелир является одним из самых простых в конструкции и эксплуатации измерительных приборов. В соответствии с его названием, он служит для нивелирования – определения разности высот между несколькими точками земной поверхности.
Основным элементом конструкции нивелира является оптический блок, то есть зрительная труба. Она состоит из линзы, объектива, фокусирующей трубки и окуляра с нанесенным на него крестом сетки нитей.

Компенсатор является очень важным компонентом нивелира, его задача – исправить ход луча света, попадающего в объектив. Или проще говоря – компенсатор удерживает визирную ось в горизонтальном положении.

Большинство нивелиров имеют магнитный демпфер компенсатора . Проще говоря, это маятник, который движется между двумя магнитами. Также есть компенсаторы с воздушными демпфером. Воздушные компенсаторы как правило используются на более дешевых приборах. Их основные недостатки: длительное время стабилизации и деликатная конструкция, менее устойчивы к повреждениям, чем магнитные компенсаторы. Компенсатор имеет ограниченный диапазон действия (обычно несколько градусов), поэтому перед началом измерений нивелир должен быть отгоризонтирован с помощью установочных винтов в трегере и круглого пузырькового уровня. Эта операция выполняется после установки прибора на геодезический штатив .

От чего зависит точность и качество нивелира?
Вопреки распространенному мнению, не только увеличение зрительной трубы является ключевым параметром оптического нивелира, а так же диаметр объектива оказывает большое влияние на качество изображения.
Диаметр объектива – важнейший оптический параметр нивелира. Он определяет диапазон увеличения, разрешение прибора, то есть качество изображения, диапазон наблюдения, поле зрения. Чем больше диаметр линзы, тем лучше визуальное изображение выравнивающего стержня в окуляре, и, следовательно, наблюдение может быть выполнено с большей точностью.
Увеличение зрительной трубы – зависит от диаметра объектива и используемой линзы. Увеличение обычно колеблется от 20 до 32х. Чем выше значение увеличения, тем больше увеличение изображения пятна, видимого в окуляре телескопа. Для строительных работ достаточно нивелирующих инструментов с телескопами с увеличением 20, 22 и 24. Инструменты с лучшим телескопом чаще всего используются геодезистами.
Поле зрения – информирует вас о длине участка рейки, расположенного в 100 м от станции нивелирования, которая будет видна в окуляре.
Яркость объектива – параметр, редко предоставляемый производителями измерительной техники. Это зависит от конструкции оптической системы и качества используемых в ней компонентов. Более высокая яркость объектива позволяет проводить точные измерения уровня в более сложных условиях освещения.
Минимальное фокусное расстояние – наименьшее расстояние выравнивателя от точки измерения, из которой изображение пятна, видимого в окуляре, будет «резким».
Качество изображения и соответственно удобство работы зависит от совокупности факторов и диаметра объектива и увеличения телескопа.

Какие аксессуары необходимы для нивелира?
Нивелир без дополнительных аксессуаров похож на автомобиль без колес – красивый, но при этом не ездит. Сам инструмент в без аксессуаров использовать нельзя.
Штатив – часто называют треногой. Под технический нивелир достаточно использования алюминиевого штатива. Он легкий, устойчив к погодным условиям, удобен в транспортировке и долговечен. Для современных приборов он должен иметь 5/8-дюймовый винт – это стандартное крепление оптических нивелиров и других измерительных приборов.

На рынке есть штативы с плоской или сферической головкой. Последний позволяет быстро выравнивать прибор без необходимости точной регулировки ножек штатива. Опытные пользователи на шаровой головке могут выровнять инструмент, не используя регулировочные винты в трегере.

Нивелирная рейка, наиболее популярными на данный момент являются алюминиевые телескопические рейки. Деревянные рейки время от времени используются в строительных и геодезических изысканиях. Алюминиевые рейки различаются по длине (от 3 до 7 м) и, следовательно, по количеству сегментов. Сегменты основаны на принципе телескопа. Сложенный участок имеет длину чуть более 1 м и его легко транспортировать. Алюминиевые рейки имеют геодезическое шкалу типа «Е» с одной стороны и стандартное миллиметровое деление с другой.

Важно, чтобы рейка была снабжен коробкой уровнем для установки. Часто многих пользователи не используют уровень и устанавливают рейку вертикально «на глаз». Однако что неправильная установка рейки очень сильно влияет на конечную точность нивелирования.

С чего начать работу с нивелиром?
Правильному нивелированию должно предшествовать несколько подготовительных действий. Нивелир обычно устанавливается на штатив с тремя ножками (предпочтительно из алюминия или фиберглас, потому что они легкие и долговечные). на устойчивое основание и вставляется в горизонт регулированием ножек штатива и подъемных винтов нивелира (для контроля используется круглый пузырьковый уровень).
Компенсатор же отвечает за точное выравнивание. Это автоматическая маятниково-магнитная система, которая корректирует ход луча света, поступающего в телескоп на постоянной основе, и благодаря этому позволяет выполнять выравнивание даже с вибрирующим штативом. Часто начинающие пользователи испытывают затруднения при выравнивании нивелира с помощью регулировочных винтов в трегере. Лучший и самый быстрый способ – использовать два винта.
Установите нивелир так, чтобы его зрительная труба была перпендикулярна линии, соединяющей два винта, с помощью которых будем устанавливать нивелир. Поворачивая оба в противоположных направлениях быстро приведем пузырь к середине. Третим винтом по необходимости приведите пузырек в центр капсулы.

Читайте также:
Подвесной унитаз с инсталляцией: плюсы и минусы

Основы определения разницы высот с помощью нивелира
Рассмотрим простое определение разницы в высоте между противоположными точками. Пользователь видит в окуляр сетку нитей: это четыре штриха – одна вертикальная и несколько горизонтальных. Почему несколько горизонтальных, ведь одного – среднего было бы достаточно? Однако, основываясь на показаниях, сделанных с двумя крайними горизонтальными штрихами – вы можете легко рассчитать расстояние, на котором рейка находится от нивелира.

После установки нивелира на штатив и его выравнивания, помощник вертикально устанавливает рейку (ему поможет уровень, прикрепленный к ней) в точке A. Наблюдатель осуществляет точное прицеливания с помощью винта горизонтального круга и фокусирует изображения с помощью фокусирующего винта и в окуляре выполняет чтение отметки O1.

В точке A мы имеем: 24 (потому что тире выше 24, но ниже 25), 6 (шестой сантиметр), 5 (пятый миллиметра сантиметра). Получаем показание отметки O1 – 2465 мм . Это расстояние от середины штрихов до точки, на которой стоит рейка.

В точке B, в свою очередь, мы получили показание O2 – 2045 мм . Для расчетов предположим, что точка А имеет высоту 0 м, и мы будем использовать формулу: HB = HA + O1 – O2 HB = 0 м + 2,465 м – 2045 м = 0,42 м.
Это означает, что точка B находится на 42 см выше точки A.

Как измерять расстояние с помощью дальномерных нитей нивелира?
Расстояние между нивелиром и рейкой можно приблизительно измерить с помощью инструмента нивелира. Вам не нужно использовать дополнительные дальномеры или измерительные ленты . Для этого используются две дополнительные горизонтальные линии пересечения нити.

Чтобы рассчитать расстояние положения выравнивателя от рейки, прочитайте показания рейки на верхнем и нижнем штрихе. Итак, мы имеем:
Считывание по верхнему штриху В = 2539 мм.
Считывание нижнего штриха Н = 2390 мм.
Для расчета расстояния мы будем использовать формулу:
D = (В [мм] – Н [мм]) x K (k – постоянная умножения нитяного дальномера, обычно 100)
D = (2539 мм – 2390 мм) х 100 D = 14 900 мм = 14,9 м.

Для чего горизонтальный круг с отметками на оптическом нивелире?
Горизонтальный лимб используется для расчета угла поворота прибора при измерении. Лимб используется при нивелировании полярным методом, но стоит отметить что точность отсчетов невысокая. Горизонтальный лимб с делением на 360 и 400? В чем разница?
В 90% случаев при покупке нивелира пользователи не обращаются внимание на горизонтальный лимб. Им он не пригодится или используют в единичных случая как вспомогательный инструмент.

В оставшихся случаях – следует обратить на него внимание. Разметка лимба может быть выполнена в градусах и градах . Работа в градусах (шкала до 360) привычнее для ориентрования геодезисту. Грады (шкала до 400) удобнее в расчетах и использовании рядовому пользователю.
Плюсы прибора с разметкой градах:

• грады имеют десятичное деление, естественное для калькуляторов и компьютеров
• расчеты выполняются быстро, даже в памяти, без необходимости какого-либо преобразования или преобразования
• использование града исключает риск ошибок вычислений из-за разделения шага на 60 минут (секунд) и 3600 градусов (секунд).

Как самостоятельно проверить нивелир и подготовить его к работе?
Мало толку от качественной оптики нивелира или его высокого стандарта по пыле- и влагостойкости, если прибор вышел из строя и результаты измерений неверны. Каждый производитель измерительной техники перед выпуском товаров на рынок проводит контроль и настройку. Тем не менее, даже путешествие на машине из офиса продаж на стройплощадку может привести к тому, что инструмент станет неточным в результате сотрясений. Кроме того, перепады температур, внутренние напряжения материала, из которого сделан нивелир – это факторы, которые вызывают формирование инструментальных погрешностей.
На самом деле оптических нивелиров очень просты в конструкции приборов и редко подвергаются самопроизвольным сбоям. Поломка нивелира обычно это результат падения. По правилам перед каждым нивелированием мы должны проверять 3 наиболее важных геометрических условия. Но в большинстве случаев нивелир работает в течение нескольких лет без надлежащего технического осмотра.
Если мы не можем позволить себе простои из-за обслуживания приборов – стоит знать несложную процедуру контроля и время от времени проверять его состояние самостоятельно? Тем более производители в комплекте с инструментом продают набор инструментов для юстировки.

В рамках полевого выпрямления мы проверяем три геометрических условия, которым должен соответствовать выравниватель:
• Основная плоскость пузырька круглого уровня pg должна быть перпендикулярна главной оси vv выравнивающего устройства.
• Горизонтальная линия прицельной сетки должна быть перпендикулярна главной оси vv.
• Визирная ось cc должна быть горизонтальной в диапазоне действия компенсатора.

Перед началом юстировки проверьте работоспособность механических компонентов нивелира. Внимательно посмотрите на винты трегера, горизонтальные винты, фокусирующий винт и окуляр, оцените их на предмет плавной работы и наличия нестандартных зазоров. Стоит несколько раз повернуть инструмент, установленный на штативе и убедиться, что механизм главной оси механизма не поврежден. Только если все механические компоненты нивелира находятся в рабочем состоянии, вы можете приступить к проверке устройства.

Читайте также:
Наливные полы для ванной комнаты: виды, производители, расчет расхода, цены

Этап 1: Поверка круглого уровня

Проверка и выпрямление перпендикулярности основной плоскости пузырькового уровня к главной оси нивелира.
Выровняйте инструмент на штативе с помощью винтов и контролируя процесс по круглому уровню. Поверните нивелир на 180 ° и посмотрите, не вышел ли пузырь из кольца уровня. Если нет, то уровень установлен правильно. Если уровень вышел за границы кольца – требуется исправление. Мы делаем это как с помощью регулировочных винтов трегера, так и с помощью установочных винтов уровня.

Отклонение пузырька на половину ошибки устраняется поворотом винтов трегера в противоположном направлении. Вторая половина той же ошибки устраняется с помощью регулировочных винтов уровня. Проверяем правильность исправления поворотом на 180 градусов. При необходимости повторяем корректирующие действия.

Этап 2: Проверка вертикальности сетки нитей
Контроль можно проводить двумя способами
1. Сфокусировавшись нивелиром на отвес легко можно определить вертикальность сетки нитей. Совпадает ли она с вертикальной линией отвеса или нет. При необходимости выполняется регулировка винтами по отвесу как по эталону.

2. Одним краем горизонтальной линии сетки нитей наводимся на точку на стене, плавно поворачиваем нивелир в горизонтальной плоскости. Если сетка нитей настроена верно – точка будет находится на другом конце горизонтальной линии. Данный способ контроля отвеса не требует, но менее пригоден для регулировки отклонения.

Этап 3: Проверка работоспособности компенсатора

Если при повороте прибора гудит, стучит, . Это шанс, что компенсатор в нивелире еще может быть исправен. Если при осторожном встряхивании инструмента или постукивании по корпусу слышен звон и изображение в окуляре вибрирует – скорее всего, компенсатор работает правильно. Если во время этого теста крест не вибрирует, это может означать, что маятник завис или механизм поврежден более серьезно. Тогда, к сожалению, нас ждет посещение сервиса, и дальнейшая процедура настройки на месте невозможна. По поводу ремонта нивелира предлагаем услуги нашего сервисного центра. Производим ремонт оборудования любой сложности, диагностика бесплатно.

Если компенсатор функционирует, второй тест этого параметра состоит в проверке диапазона действия.

  • Установите прибор на штатив и на расстоянии 30-50 м установите вертикально рейку.
  • Выровняйте прибор и измерьте O1.
  • Наклоните сферический пузырек пузырька к четырем крайним положениям, и каждый раз мы читаем O2, O3, O4 и O5 на рейке.
  • Если все показания O1-O5 не отличаются друг от друга более чем на 1 мм (ошибка считывания), это означает, что компенсатор работает корректно во всем диапазоне значений.

Этап 4: Поверка горизонтальности визирной оси

Проверка и исправление горизонтальной установки оси в области действия компенсатора. Проверка и исправление горизонтального выравнивания визирной оси является наиболее трудоемким этапом. Также необходимо иметь две нивелирных рейки и установить их друг от друга и вертикально на расстоянии не менее 30 метров. Поставить прибор посередине между рейками и вычислить превышение между точками.

Возьмем для примера:
отчет по рейке A = 1.787м,
отчет по рейке B = 1.632м,
превышение (Δh) в этом случае будет: Δh = А–B = 0.155м. с Переставить штатив с прибором ближе к точке А и, взяв отчет по этой же рейке (для примера 1.509м), вычислить теоретический отчет по рейке B (отчет по рейке А – Δh). В нашем примере теоретический отчет по рейке В = 1.509м – 0.155м = 1.354м.
Взяв отчет по рейке В сравнить его с теоретическим. Если разность между отчетами превышает 1-3 мм, необходимо выполнить настройку. Отверните защитную крышку окуляра (или откройте заглушку в нивелирах Sokkia) и с помощью юстировочной шпильки / отвертки / шестигранника из комплекта прибора поворачивайте винт до тех пор, пока отчет по средней горизонтальной нити не станет равен теоретическому (1.354м). После чего необходимо повторить поверку.

Свяжитесь с нами, если у Вас есть вопросы по обслуживанию или приобретению оптического нивелира:

Нивелиры оптические: устройство и принцип работы

Во многом процесс монтажных и строительных работ зависит от того, насколько точно были выполнены разметочные работы на площадке. Определить разницу между разными точками участка крайне сложно, поскольку идеально ровных поверхностей не бывает, а точки на плоскости разные по высоте. Здесь потребуется специальный инструмент под названием нивелир, которому и будет посвящена эта статья.

  • Применение геодезических умений при строительстве
    • Рейки и их описание
    • Устройство нивелира оптического типа
  • Классы нивелирования
  • Принцип работы во время съемок
  • Нивелирование 4 класса методом средней нити

Применение геодезических умений при строительстве

Во время работ по вынесению планов в натуру следует знать, какова разница между высотами нескольких точках на участках поверхности и отметкой, выступающей в роли условного уровня. Нахождение разности высот называется геометрическим нивелированием и выполняется с помощью нивелира и специальных реек.

Ось нивелира имеет горизонтальное положение, из точки условного уровня имеются разницы высот показаний в зависимости от отметок на рейках. В процессе работы каждая точка располагается в ста метрах от точки размещения нивелира, уровень ее нужно мерить как минимум три раза, следует при этом принимать среднее арифметическое значение. Планы земельных участков строят на основе таких данных. Так, нивелир нужен с целью выяснения разницы высот в точках измерений.

Рейки и их описание

Под нивелирной рейкой понимается специальная планка, которая в точках для измерений высот устанавливается вертикально. Ее можно делать из дерева или металла (алюминия).

Читайте также:
Расчет кирпича на кладку стены и цоколя: свойства и способы строительства

Такая рейка имеет длину около 3−4 метров, и чтобы ее удобно было транспортировать, можно складывать пополам посредством специального узла. Современные варианты подразумевают раздвижную телескопическую конструкцию.

На сторонах стандартной рейки часто имеется градуировка:

  • с лицевой стороны разметка делается в метрической системе измерения;
  • с обратной стороны — в дюймовой соответственно.

Перед началом работ рейку ставят на нижней металлической скобе в центр измерительной точки посредством специальной отметки.

С целью удобства для удержания инструментов на точке присутствуют специальные ручки. Если рейки качественные и сделаны на основе специального сплава железа и никеля, то на них есть пузырьковые уровни, чтобы можно было контролировать вертикальное размещение рейки.

Если работы находятся на начальном этапе исследований застройки, то нужно выполнить комплексное моделирование объекта в будущем во взаимодействии с окружающим ландшафтом и архитектурой.

Точки измерения фотографируют с переносом значений реальных масштабов как данные для разных компьютерных программ, благодаря чему объект можно смоделировать во взаимодействии с окружающим экстерьером.

Устройство нивелира оптического типа

Данный прибор включает в себя четыре ключевых элемента:

  • зрительную трубу оптического типа. Принцип ее работы предусматривает свободное движение в горизонтальной плоскости. Ключевой функцией такой трубы является то, что она наводит систему на объект съемки;
  • уровень цилиндрический. Такая деталь — это очень чувствительное устройство, оно нужно для того, чтобы точно определить ориентированность нивелира относительно отвеса. Определить точность размещения горизонтальной оси можно по нахождению пузырька уровня в т. н. «нуль-пункте»;
  • трегер — это подстава для оптической трубы с тремя винтами, с помощью которых регулируется высота;
  • элевационный винт — он нужен для однозначного ориентирования. Чтобы определить параметр, нужно привести в горизонтальное положение визирную линию устройства.

А еще в конструкции оптических нивелиров последнего поколения часто предусмотрен встроенный компенсатор. Он нужен для поддержки нивелира в строго горизонтальном положении. Это исключает погрешности, которые могут быть спровоцированы даже незначительным наклоном устройства, а геодезическая съемка будет более точной.

Выбирать тот или иной тип устройства нужно в зависимости от точности измерений и уровня проводимых работ.

Классы нивелирования

Существуют разные классы нивелирования. Ключевыми высотными основами являются первый и второй класс.

Нивелирование первого класса имеет высокую точность работ. Данный результат можно получить только с применением качественных современных геодезических устройств, с помощью которых можно проводить данные измерения. И только ультрасовременные разработки позволят не допускать даже мелких погрешностей и даже стандартных ошибок.

Конструкция данного оборудования включает в себя плоскопараллельную пластину, выступающую в роли составного элемента микрометра. Данную деталь ставят перед объективом движущейся зрительной трубы, а еще такой оптический нивелир должен быть оснащен компенсатором или же контактным уровнем, в котором пузырек отличается в поле зрения трубы. Есть несколько видов оптических нивелиров, которые применяются для выполнения работ первого класса. Все их функциональные особенности целиком должны соответствовать всем нужным требованиям.

Для проведения нивелирования второго класса тоже нужно применять высокоточные оптические приборы. Их конструкция предусматривает наличие плоскопараллельных пластин, а также компенсатора или же контактного уровня. Как и в предыдущем случае, есть специальные виды приборы для этой работы, но также можно применять и те устройства, что прошли сертификацию и имеют требуемый уровень точности.

Чтобы выполнять измерения третьего класса, нужен оптический нивелир, оснащенный встроенным компенсатором, а для четвертого класса нужен прибор с уровнем и компенсатором. В зависимости от классификации нивелирования, оптические приборы бывают таких видов:

  • высокоточные;
  • точные;
  • технические.

Принцип работы во время съемок

Чтобы не допускать ошибок и понимать принцип работы устройства, нужно знать, как он устроен изнутри и какие существуют его виды. Самые распространенные оптические приборы обладают различной степенью точности измерения. Обычно они состоят из зрительной трубы со специальным цилиндрическим уровнем, с помощью которого можно контролировать горизонт оптической оси.

Сквозь оптическую призматическую систему изображение проецируется в оптику трубы, а затем постоянно контролируется. Для того чтобы правильно его настроить для выполнения измерительных работ, нужно внимательно прочесть инструкцию. Благодаря специальным винтовым механизмам (азимутальным, подставочным и элевационным) можно обеспечить максимальную точность выставленного горизонта. Устройство ставят на специальную треногу с осью вращения.

Чтобы результаты измерений были более точными, а погрешности в определении расстояния между разными точками были сведены к минимуму, следует использовать нивелиры цифрового типа. Но для них нужно иметь рейки со специальными штрих-кодами, благодаря которым обеспечивается автоматическая регистрация данных с помощью микропроцессоров.

Принцип работы данного нивелира можно увидеть в интернете в специальных роликах. Если подобные рейки отсутствуют, то данные виды нивелиров применятся по аналогии с обычными оптическими.

Но помните, что перед применением даже самого простого оптического нивелира, его следует подвергнуть таким проверкам:

  • уровня при трубе;
  • уровня круглого;
  • горизонтальности сетей ниток.

Помимо этого, по уровню могут проверять и вертикаль сети ниток разметки устройства с уровнем при трубе.

Немаловажными показателями выступают еще цена деления уровня при трубе, а также ее краткость. Это позволяет определить пригодность.

Сами работы могут выполняться с применением оптических, а также водяных или лазерных уровней.

Нивелирование 4 класса методом средней нити

Для начала прибор приводится в рабочее положение посредством цилиндрического или контактного уровня. Потом зрительная труба наводится на поверхность темной стороны задней рейки, а пузырек уровня приводится в «нуль-пункт» элевационными или подъемными винтами. Отсчет можно снять посредством дальномерных и средних штрихов.

Читайте также:
Необычная «наперстянка» Реймания: выращивание из семян, посадка и уход

Таким же образом нужно выполнить съемку во время наведения трубы на поверхность темной стороны передней рейки, а затем на поверхность красной стороны передней части, а потом — на поверхность темной стороны задней части.

При условии применения оптического прибора с компенсатором следует, прежде всего, установить устройство в рабочее положение, а также проконтролировать нормальнее рабочее положение компенсатора. И только после этого приступать к процессу съемки.

Во время съемки все фиксируйте в полевом журнале. Удобнее всего применять для этого запоминающее устройство регистратора. Если была определена разница в значениях более 5 мм, то измерения проводят заново, при этом следует изменить высоту приборы как минимум на 3 см. По окончании полевых работ подсчитайте невязки по линии между исходными реперами. Это значение должно быть от 20 мм, все результаты нужно вносить в ведомость повышений.

Итак, выше были рассмотрены особенности и принцип работы оптического нивелира, который часто используется при строительных работах. В настоящее время альтернативы такому прибору не существует, поэтому при проведении геодезических работ он долго еще будет являться наиболее актуальным.

Оптический нивелир конструкция и принцип действия

По сути оптический нивелир это прибор который используется в геодезии и строительстве для измерения перепада высот земной поверхности и работает как подзорная труба. Давайте подробнее остановимся на его устройстве.

Устройство оптического нивелира

Выделяются четыре основных элемента прибора

1. Оптическое устройство, так называемая зрительная труба. Принцип работы этой детали — свободное вращение в горизонтальной плоскости. Главной функцией зрительной трубы является наведение системы на объект съемки.

2. Цилиндрический уровень. Эта деталь является исключительно чувствительным устройством. Его назначением является определение точности ориентирования нивелира относительно отвеса. Точность расположения горизонтальной оси определяется по нахождению пузырька уровня в так называемом «нуль-пункте».

3. Трегер. Подставка для зрительной трубы с тремя винтами, регулирующими высоту расположения.

4. Винт элевационный. Эта деталь отвечает за однозначное ориентирование. Для определения параметра необходимо визирную линию прибора привести в горизонтальное положение.

Кроме того, в конструкцию оптических нивелиров последних моделей в большинстве случаев встроен компенсатор. Его задача — поддержание инструмента в строго горизонтальном положении и, как следствие, исключение погрешностей, которые могут быть вызваны даже небольшим наклоном прибора, при этом геодезическая съемка становится более точной.

Выбор типа оптического нивелира основан на требуемой точности измерений в зависимости от уровня проводимых геодезистом работ.

Разделение нивелирования по классам

Соединения нивелирных сетей, образующих единую государственную нивелирную сеть РФ, можно разделить по классам. К основной высотной основе относятся первый и второй классы. Для нивелирования I класса характерна высочайшая точность работ.

Получение такого результата работы возможно только с помощью современнейших геодезических приборов, позволяющих использовать соответствующие методы измерений.

Только последние разработки геодезического оборудования позволяют избежать стандартных ошибок и малейших погрешностей в работе. Речь, разумеется, идет о высокоточном оптическом нивелире.

В его конструкцию входит плоскопараллельная пластина, являющаяся составным элементом оптического микрометра. Устанавливается эта деталь перед объективом вращающейся зрительной трубы.

Кроме того, оптический нивелир такого уровня снабжается компенсатором или такой деталью, как контактный уровень, пузырек которого различается в поле зрения вращающейся зрительной трубы.

Для нивелирования I класса используются оптические нивелиры видов Н-05, H1, Ni-002 и Ni-004. Функциональные возможности этих марок полностью соответствуют всем необходимым требованиям.

При осуществлении нивелирования II класса также необходимы высокоточные нивелиры оптические с конструкцией, включающей в себя и плоскопараллельные пластины, и компенсатор или контактный уровень.

В данном случае могут применяться приборы H1 и Н-05, Ni-002, Ni-004 и Ni-007. Возможно и использование приборов, прошедших сертификацию и соответствующих необходимому уровню точности.

Для проведения измерений III класса предпочтителен нивелир оптический с компенсатором встроенного типа, а для IV класса — нивелир как с уровнем, так и с компенсатором.

Вообще, оптические нивелиры разделяют на технические, точные и высокоточные в зависимости от классификации нивелирования.

Принцип работы оптического нивелира при проведении съемки

Рассмотрим процесс нивелирования IV класса так называемым методом «средней нити». В первую очередь прибор приводится в рабочее состояние с помощью контактного или цилиндрического уровня.

Затем производятся наведение зрительной трубы на поверхность черной стороны задней рейки и приведение пузырька уровня в упомянутый «нуль-пункт» (посредством подъемных или элевационного винтов). Теперь дальномерные и средние штрихи позволяют снять отсчет.

Затем таким же образом производим съемку при наведении зрительной трубы на поверхность черной стороны передней рейки, далее — на поверхность красной стороны передней части рейки и, наконец, по поверхности черной стороны задней части рейки.

В случае использования оптического нивелира с компенсатором первое, что нужно сделать, — установить устройство в рабочее положение, проконтролировать нормальное рабочее состояние компенсатора. И лишь потом можно приступать к съемке.

В процессе съемки все наблюдения необходимо фиксировать в полевом журнале. Еще удобнее — использование для этих целей запоминающего устройства регистратора.

При обнаружении разницы в значениях превышения более 5 мм необходимы повторные измерения, причем в этом случае необходимо изменить высоту прибора по меньшей мере на 3 см. Заканчивая полевые работы, необходимо подсчитать невязку по линии меж исходных реперов.

Ее значение не должно быть выше 20 мм. Результаты полевых работ заносятся в специальную ведомость превышений. На сегодняшний день альтернативы использованию нивелира оптического нет, так что ближайшие десятилетия этот инструмент будет совершенно незаменим при проведении геодезических работ.

Видео: Устройство и принцип работы нивелира

Читайте также:
Подключение накопительного водонагревателя своими руками: схемы, этапы работ

Как работать нивелиром

Устройство нивелира

Рассмотрим, из чего состоит и как работает обычный оптический нивелир. Основной частью прибора является оптическая труба, с системой линз способная приближать наблюдаемые объекты с двадцатикратным и более увеличением.

Труба закреплена на особой поворотной станине, необходимой для следующих функций:

  • крепления на штативе;
  • выставления оптической оси нивелира в строго горизонтальное положение, для чего станина имеет три регулируемые по высоте «ножки» и один или два (в моделях без автоматической подстройки) пузырьковых уровня;
  • точной наводки по горизонтали, которую осуществляют парными или одиночным маховичком.

У некоторых моделей станина имеет специальный лимб, шкалу, позволяющую выполнять измерение или построение горизонтальных углов.

С правой стороны трубы расположен маховик, предназначенный для регулировки резкости изображения.

Подстройка под зрение оператора производится вращением регулировочного кольца на окуляре.

При взгляде в окуляр зрительной трубы нивелира, мы увидим, что помимо приближения наблюдаемого в прибор предмета, нивелир накладывает на его изображение систему тонких линий, называемую визирной сеткой или визирными нитями. Она образует крестообразный рисунок, из вертикальных и горизонтальных линий (см. рисунок 1).

Дополнительные приспособления и инвентарь

Кроме самого прибора, для работы нам понадобится уже упомянутый штатив, а так же специальная мерная рейка, с нанесенными на ней делениями и цифрами. Деления представляют собой полоски чередующиеся черные или красные полоски шириной в 10 мм.

Цифры на рейке нанесены с шагом в десять см, а значение от нуля и до конца рейки в дециметрах, при этом числа выражены двумя цифрами. Так, 50 см обозначается как 05, число 09 обозначает 90 см, цифра 12 укажет на 120 см и т.д.

Для удобства, пять сантиметровых рисок каждого дециметра объединены еще и вертикальной полоской, так, что вся рейка оказывается размеченной знаками в виде буквы «Е», прямой и зеркальной.

Старые модели приборов дают перевернутое изображение, и рейка к ним требуется специальная, с перевернутыми цифрами.

Вспомогательные приспособления к нивелиру

К нивелиру прилагается паспорт, где обязательно указывается дата его последней проверки и настройки или, как говорят геодезисты «поверки». Поверяют нивелиры не реже чем раз в три года, в специальных мастерских, о чем делается очередная запись в паспорте.

Кроме паспорта, в комплекте нивелира идет ключ для обслуживания и мягкая фланель для протирки линз и конечно защитный футляр, где он хранится. Модели с горизонтальным лимбом — угломером комплектуются отвесом для установки строго в нужной точке.

Оберегайте нивелир от ударов и толчков, даже когда он в футляре. Современные приборы оборудованы специальным устройством, осуществляющим точную подстройку по горизонтали, сильный толчок, внешне не оставивший ни малейшего следа, может повредить его тонкий механизм.

Принцип действия нивелира. Установка прибора

Принцип работы нивелира предельно прост: оптическая ось прибора располагается строго горизонтально и не отклоняется при вращении прибора, постоянно находясь в одной горизонтальной плоскости.

Рассмотрим более подробно, как это качество можно использовать на практике.

Работу начинаем с установки прибора. Раздвигаем, и устанавливаем штатив. При работе на мягкой почве вдавливаем в нее острия, которыми заканчиваются «ноги» штатива.

Регулируя длину «ног», выставляем штатив на удобную для работы высоту, стараясь, чтобы его верхняя площадка, куда ставится нивелир, располагалась горизонтально.

Извлекаем из защитного футляра нивелир и устанавливаем его на штатив, закрепляя винтом штатива.

Теперь необходимо выставить нивелир так, чтобы его оптическая ось расположилась строго горизонтально. Для этого инструмент снабжен круглым пузырьковым уровнем, расположенным на станине. Вращая верньеры на ножках прибора, выставляем воздушный пузырек строго в центр уровня (см. рис.1).

Теперь, как бы мы не вращали трубу прибора, оптическая ось будет располагаться горизонтально.

Работа с нивелиром на стройке

Определение превышения точек

Как устанавливать инструмент мы разобрались, теперь рассмотрим, как определять с помощью нивелира разность высот двух и более точек. Для этого нам понадобится рейка и помощник, который будет рейку держать и переносить туда, куда нужно.

Выбираем первую точку измерения (обозначим ее «а»), на которую помощник ставит рейку по возможности вертикально. Вертикальность можно корректировать по вертикальной риске визирной сетки, подавая соответствующие сигналы помощнику.

Наводим прибор на рейку, сначала приблизительно, пользуясь «прицелом» сверху трубы. Смотрим в окуляр и, вращая маховик, добиваемся четкой видимости рейки.

Снимаем показания. Для этого смотрим, между какими значениями рейки оказалась горизонтальная линия визирной сетки, добавляем к нижнему значению количество сантиметровых делений между линией значения и линией визира прибора (или, если это удобнее, вычитаем из верхнего значения).

К примеру, риска легла чуть больше чем на три деления выше цифры 15. Нужно записать в блокноте значение 153, округляя до сантиметра в большую или меньшую сторону.

Даем команду помощнику перенести рейку на следующую точку («б») и снова выполняем замеры. Допустим, на рейке мы увидели значение «18» а наша риска чуть-чуть не добралась до «буквы Е», которая соответствует пяти делениям (сантиметрам). Значение высоты будет равно 185. Записываем его.

Поскольку горизонт нивелира неподвижен, а двигается рейка, то чем она ниже, тем больше значение мы увидим в объективе. Вычитаем: 185-153=32 Точка «б» ниже точки «а» на 32 сантиметра.

Определение превышения точек

Перенесение отметки

Разберемся, как перенести с помощью нивелира высотную отметку. К примеру, нам нужно сделать репер, ориентируясь на который, экскаваторщик будет копать котлован, глубиной на два метра ниже отметки пола здания. Значение высоты пола, нам и нужно указать экскаваторщику.

Читайте также:
Наличники на окна в деревянном доме: функции и разновидности

Устанавливаем рейку на реперной проектной точке, высота которой соответствует проектной высоте пола здания, то есть ноля, берем отсчёт. При самостоятельной разработке проекта либо при → привязке к местности уже существующего проекта высота этой точки выставляется с помощью колышка либо на какой-то неподвижной поверхности (кирпичный забор, дерево, столб и т.д.) устанавливается метка. Либо такие реперы (метки) выставляет геодезист, сопровождающий стройку. Пусть, к примеру, получилось 162.

Непосредственно у места будущего котлована, вбиваем колышек и, поставив рейку вплотную к нему, снова снимаем значение, пусть оно будет равно 179. Разница составит 17 сантиметров. Откладываем 17 см от низа рейки вверх по колышку, отмечаем значение риской маркера или карандаша. Вбив рядом еще один колышек, чтобы его верх совпал с риской, получим хорошо видимый ориентир, после чего колышек с риской можно убрать.

Нивелир, рэпер и балтийская система высот

Нивелир что это? Его назначение, виды, характеристики и выбор

Для профессиональных строителей и геодезистов нивелир является обязательным прибором.

Он позволяет выполнять измерения и производить вычисления с высоко точностью.

Огромное количество видов этого прибора позволяет подобрать подходящий вариант для большинства задач, начиная с несложного домашнего ремонта, заканчивая созданием крупных архитектурных проектов.

Назначение нивелира

Одной из важнейших геодезических работ, проводимых при строительстве каких-либо объектов, является нивелирование.

Для этих целей применяется соответствующий инструмент –нивелир.

Целью данной операций является определение на местности разности высот конкретных точек, а также изучение форм рельефа.

Нивелиры используются при:

  • проектировании, и создании геодезических структур высокой точности;
  • монтаже технического оснащения и конструкций, например, для установки столбов ЛЭП;
  • декорировании местности, выравнивании больших площадей;
  • прогнозировании величины оседания каких-либо построек;
  • строительных работах внутри помещений, например, монтаже полов, потолков.

В быту нивелиры часто применяют при ремонте помещений.

Для этих целей существует отдельный вид приборов, которые часто называют лазерными уровнями.

Они проецируют на плоские поверхности лазерные лучи и отлично подходят для разметки углов.

Кроме прочего, применение лазерного нивелира обеспечивает точность укладки кафеля и любого материала, где требуется соблюдение прямых углов и линии.

По этой причине прибор используют и для оклейки обоев, где требуется соблюдать строго вертикальные линии стыков.

Для электрика нивелир также будет полезен.

С его помощью можно четко позиционировать расположение розеток, выключателей, предохранительных щитов на одном уровне от пола, либо же относительно горизонта.

Также в быту используют простейшие гидростатические нивелиры, работающие по принципу двух сообщающихся сосудов с жидкостью.

Устройство и характеристики

Самый простой нивелир это оптический прибор, состоящий из пузырькового уровня в виде цилиндра, зрительной трубы с увеличением и визирной оси.

Настройка трубы выполняется оператором в зависимости от позиции исследуемого объекта.

Для выполнения измерений, такой нивелир работает в паре с нитяным дальномером и рейкой с сантиметровыми делениями.

Цифровые модели по принципу работы и строению схожи с оптическими, однако, все расчеты выполняются автоматически, что исключает ошибки оператора, а затем отображаются на экране.

Иной принцип работы у лазерных нивелиров, как и их устройство.

Лазерный луч достигая поверхности объекта, определяет имеющиеся отклонения.

Сегодня такой инструмент является самым распространенным.

Чтобы отклонения были четко видны, нивелиры имеют яркий красный луч, который отчетливо видно внутри помещений.

Для работы на открытом пространстве используется прибор с зеленым лучом.

Этот цвет, за счет своей длинны волны, лучше воспринимается человеческим глазом, а к тому же является более мощным и дальнобойным.

Приборы могут устанавливаться на штативе с градуированным лимбом, который позволяет выполнить приблизительное измерение горизонтальных углов.

Для оптических нивелиров был разработан стандарт ГОСТ 10528-90, в котором указаны информационные данные о приборах, основные параметры и типы, предъявляемые технические требования и методы испытаний.

Этот стандарт заменил устаревший ГОСТ 10528-76.

Согласно ГОСТу, каждый оптический нивелир должен относится к одному из следующих классов:

  1. Высокоточный – квадратическая погрешность на 1 км хода не превышает 0,5 мм.
  2. Точный – погрешность не превышает 3 мм.
  3. Технический – погрешность не более 10 мм.

Материал

Штативы для нивелиров изготавливают чаще всего из алюминия, так как данный материал имеет небольшой вес, но при этом обладает высокой прочностью.

Подобные характеристики положительно сказываются на удобстве транспортировки оборудования.

Также материалом для триног выступает дерево, за счет чего их стоимость выше, но и устойчивость лучше.

Мини-штативы компактного размера изготавливают преимущественно из стеклопластика.

Сами нивелиры должны обладать высокой прочностью.

По этой причине для изготовления корпуса качественных моделей используют преимущественно металл или специальный пластик.

Элементы настройки, например, винты, могут быть пластиковыми или металлическими.

Размеры и вес

В зависимости от типа нивелира, а также материала изготовления, ориентировочный вес составляет от 0,4 до 2 кг.

Оптические модели в среднем весят 1,2 – 1,7 кг.

При использовании дополнительного оборудования, например, триноги, масса повышается до 5 кг и более.

Ориентировочные размеры оптических нивелиров:

  • Длина: 120 – 200 мм;
  • Ширина: 110 – 140 мм;
  • Высота: 120 – 220 мм.

Виды нивелиров, их возможности и цена

По конструкции нивелир может быть:

Оптический

Используется для проведения различных геодезических работ, при строительстве и ремонте дорог.

Предназначен для определения разницы перепада высот точек, а также расстояния между ними.

Определение углов наклона и перепадов высот производится посредством градуированной шкалы, нанесенной на стекло.

Для правильной установки прибора относительно горизонта используется пузырьковый уровень.

Для гашения колебаний, а также для обеспечения устойчивости, такие нивелиры оснащаются магнитным демпфером или воздушным компенсатором.

Читайте также:
Печь из трубы для бани – конструкция, самостоятельное изготовление, требования

Стоимость начинается от 8 тыс. рублей.

Цифровой (электронный)

Современный геодезический прибор, который с высокой точностью снимает отсчет по специальной рейке.

Конструкция совмещает в себе одновременно нивелир оптического типа, электронное запоминающее устройство, а также встроенное ПО, обрабатывающее данные.

Электронный нивелир работает быстро и исключает ошибки оператора.

Для выполнения измерений необходимо сфокусироваться на рейке, и по нажатии кнопки прибор отобразит все необходимые значения на экране.

Стоимость самых простых моделей начинается от 80 тыс. рублей.

Лазерный

Позволяет выполнять построение вертикальных, горизонтальных и наклонных плоскостей с высокой точностью.

У некоторых приборов присутствует функция отвеса, за счет которой можно отмерять углы в 45° и 90°.

Другое название этого типа нивелира — лазерный строительный уровень, из-за сферы его применения.

Лазерные нивелиры, в свою очередь, делятся на следующие классы:

Позиционный (линейный)

Наиболее распространенный тип уровня.

Посредством линз и призм происходит преломление светового потока, и в итоге выстраиваются статичные линии, ориентированные в пространстве с высокой точностью.

Такие построители плоскостей имеют угол раскрытия до 110° — 130°.

Используют их преимущественно внутри помещений.

Стоимость начинается от 2 тыс. рублей.

Более профессиональные модели обойдутся в 7 – 8 тыс. рублей.

Ротационный

Применяется в основном на открытых строительных площадках, так как имеет большую дальность, что отражается на его стоимости.

Уровень формирует за счет луча точку, которая, посредством быстрого вращательного движения механизма, очерчивает плоскость.

Стоимость – от 7 тыс. рублей.

В солнечную погоду линию, очерчиваемую движущимся лучом, часто невозможно разглядеть.

По этой причине используют модели с приемником излучения, представляющим собой отдельное электронное устройство.

При наведении лазера на фотоэлемент такого приемника, прибор издает звуковой или визуальный сигнал.

Точечный

Испускает прямой световой луч, который, при пересечении с каким-либо объектом, формирует на нем точку.

Цена профессиональных моделей начинается от 6 тыс. рублей.

Лазерный нивелир, имеющий возможность проецировать лучи во всех трех плоскостях получил название 3D уровень.

По способу выставления инструмента (типу выравнивания), лазерные уровни делятся на:

• Ручной – настройка выполняется оператором посредством обыкновенных уровней пузырькового типа, расположенных на корпусе. Точное позиционирование выполняется винтовыми верньерами.

• Самовыравнивающийся – подстройка выполняется посредством различных встроенных механизмов.

Другое название – автоматический нивелир.

Так, система электронного выравнивания самостоятельно компенсирует до 15% погрешности отклонения от горизонта за счет анализа информации от специальных датчиков и последующей подстройки сервоприводами.

Маятниковое выравнивание компенсирует механическим способом до 5% отклонения при помощи вмонтированного постоянного магнита.

• Комбинированный – одновременно использует несколько способов выравнивания.

По цвету луча лазерные уровни бывают двух видов:

• С зеленым лучом.

Используется для работы на улице, так как длинна волны луча составляет 532 нм.

Такой цвет не только лучше воспринимается глазом, но и способен строить плоскости на удалении до 1 км.

При ярком солнечном освещении луч часто невозможно разглядеть.

• С красным лучом – применяется для работы в помещениях.

Длинна волны в 635 нм, в зависимости от конкретной модели, обеспечивает дальность действия 10 – 500 м.

Для работы лазерного прибора требуется источник питания.

Чаще всего это встроенный или съемный аккумулятор, который требует периодической подзарядки.

Для работы небольших приборов, способных поместиться в кармане, используются одноразовые батарейки.

Реже всего можно встретить сетевые варианты, для функционирования которых требуется их подключение к бытовой электросети.

Гидростатическое нивелирование – еще один точный способ измерения перепадов высот, используемый преимущественно в строительстве.

Для него требуется гидроуровень – длинный прозрачный шланг, заполненный жидкостью.

Измерительный процесс основан на законе сообщающихся сосудов Паскаля, позволяет оценить высоты объектов, находящихся не в прямой видимости.

Как выбрать нивелир?

Выбирая бытовой лазерный нивелир, нет смысла тратиться на дорогостоящий прибор, так как даже бюджетные модели позволят выполнять разметку внутри комнат любых размеров.

Для этого будет вполне достаточно минимальной длины луча.

Кроме того, чем меньше размеры помещения, тем меньшими будут угловые погрешности.

Достаточно осмотреть корпус на наличие повреждений, а также проверить лазерный уровень пузырьковым аналогом.

При выборе полупрофессиональных моделей, а также приборов для профессиональной строительной и геодезической деятельности, важными параметрами, на которые следует обратить внимание, будут:

• Количество лучей. К стандартным двум лучам, строящим линии по вертикали и горизонтали, добавляются несколько дополнительных. Как правило, расположены они по бокам устройства.

• Дальность свечения. Если этот параметр, который указывается производителем, равен 30 метрам, лучи буду светить и на большие дистанции. Но следует помнить, что по превышению указанного порога дальности, их толщина увеличивается, что приводит к снижению точности отметок.

• Наличие системы самовыравнивания. Это позволит экономить время на точном позиционировании устройства относительно горизонта.

• Угол развертки лучей. Хорошо, если этот параметр составит 110° — 130°.

• Элементы питания. Чем они проще, тем лучше. В идеальном случае прибору для работы необходимо будет две или три пальчиковые батарейки типа ААА. Также хороший вариант – аккумуляторная батарея.

В комплект поставки некоторых моделей входят защитные лазерные очки.

Они не только предохраняют глаза от воздействия излучения приборов, но в них и сам луч видно лучше при любой погоде.

Для комфортной работы также нужен штатив, особенно в тех случаях, когда прибор нужно приподнять на определенную высоту.

Для фиксации нивелира в различных местах требуется крепление типа “прищепка”.

Более удобным будет вариант с универсальным магнитным креплением.

Читайте также:
Поливочный водопровод на даче своими руками

Прибор с богатой комплектацией обойдется дороже, но, если покупать аксессуары по отдельности, их стоимость выйдет еще выше.

• Профессиональный нивелир оснащается дополнительными регулировками.

В частности, модели с мини-штативами, которые расположены прямо в корпусе, имеют винты плавной наводки, которые позволяют выполнить настройку прибора максимально правильно.

Кроме прочего, нивелиры должны иметь надежную защиту от пыли и других внешних факторов.

Определить степень защиту можно по маркировке.

Стандартной принято считать IP54 – влагоустойчивое устройство, которое подойдет для работы и под дождем, и на пыльной строительной площадке.

Для защиты от падения нивелиры должны иметь противоударный корпус и демпферные накладки.

Некоторые модели оснащаются внутренними амортизаторами, которые защищают электронные компоненты от повреждений.

Что нужно знать о нивелирах?

• Можно продлить время работы лазерного нивелира на одном заряде, отключив неиспользуемые лучи.

Такая экономия батареи будет особенно полезной для “прожорливых” ротационных приборов.

• Поддержка дистанционного управления упрощает работу с нивелиром на больших строительных площадках.

• Оптические нивелиры, в зависимости от конструкции, могут давать как нормальное, так и перевернутое изображение.

Для последних выпускается нивелирная рейка с перевернутыми числами.

При проведении замеров повышенной точности применяют рейки из специального сплава – инвара.

Нет тяги в дымоходе: способы улучшения тяги

Отопительные приборы, в которых используется жидкое или твердое топливо, грамотно функционируют только при правильном устройстве дымоходной трубы. Тяга в ней должна быть достаточной и ни в коем случае не опрокидываться. О том, что делать, если возникает обратная тяга в дымоходе, задумываются многие пользователи отопительных печей (или те, кто только собирается ее установить).

Тяга возникает в канале, благодаря разности температур наружного и внутреннего воздуха. Если ее недостаточно, или канал слишком короткий, может возникнуть обратная тяга, что весьма опасно для здоровья человека. Ведь в таком случае все продукты горения попадают в помещение.

Что делать, если нет тяги в дымоходе

Основные критерии, от которых зависит качество тяги в дымоходной трубе:

  1. Сечение трубы (оно должно быть правильно рассчитано для каждой конкретной печки, ведь если оно окажется слишком мало, несмотря на достаточную скорость в трубе, количество удаляемых продуктов горения будет недостаточным для максимальной теплоотдачи печи; с другой стороны, если человек решил перестраховаться и установил трубу слишком большого диаметра — воздух в ней будет очень быстро остывать и может образовываться конденсат, что пагубно влияет на тягу).
  2. Высота дымоходов (минимальная длина — 50см, однако, множество факторов влияет на эту величину, подробный расчет и нормы прописаны в СНиП41-01-2003 и СП 7.13130.2009).
  3. Гладкая или шероховатая внутренняя поверхность (неровности внутри трубы уменьшают тягу, так как они создают препятствия на пути движения воздуха, а значит, увеличивают потери давления по длине).
  4. Разница температур наружного воздуха и воздуха внутри печки (горячий воздух поднимается по трубе вверх, постепенно остывая, отчего и появляется тяга).
  5. Приточная вентиляция (для максимальной эффективности печи необходим достаточный приток воздуха, ведь продукты горения вместе с воздухом выбрасываются через дымоход на улицу, а значит, такое же количество воздуха должно поступить в помещение для поддержания стабильного горения).

Причины плохой тяги

Для начала нужно разобраться, почему плохая тяга в печи. Проблемы могут возникнуть и с самого начала, и в процессе эксплуатации. Ниже приведены наиболее распространенные причины:

  1. Засорение канала (сажей на стенках или всяческим упавшим с улицы мусором).
  2. Ошибки на этапе строительства (большое количество отводов и горизонтальных участков влечет за собой увеличение потерь давления по длине канала; кроме того, труба должна быть одного диаметра по всей длине для равномерной скорости, отчего зависит образование застоев сажи).
  3. Негерметичность стыков трубопровода (она может возникнуть как на этапе строительства, так и со временем, так что периодически необходимо проверять качество канала).
  4. Ветровой подпор (часто именно из-за ветра возникает временное опрокидывание тяги, поэтому желательно очень тщательно выбирать место установки дымоходной трубы).
  5. Неправильно подобранный диаметр канала относительно мощности печки.
  6. Недостаток приточного воздуха.

Причины обратной тяги

Для контроля над чистотой дымового канала, на вертикальной части трубы снизу можно смонтировать кусок трубы с заглушкой, снимая периодически которую, можно избавляться от большей части скопившегося мусора.

Конструкция дымохода

Важно! Верх дымовой трубы может попасть в зону ветрового подпора, такую возможность необходимо учитывать при выборе места выхода трубы на крышу.

Расположение дымохода на крыше здания очень важно для корректной работы печи. Ранее в статье уже упоминалось, что высота дымовой трубы должна быть не менее 500 мм. Но это только общие указания, касающиеся плоской крыши, на самом деле, высота дымохода зависит от расстояния до конька и высоких близлежащих зданий. Ниже приведены несколько главных правил по высоте дымохода:

  • Если расстояние до конька здания менее 1,5 метров — высота дымохода также должна составлять минимум 0,5 метра.
  • Если дымоход расположен на расстоянии от 1,5 до 3 метров от конька — его делают не ниже конька, независимо от высоты.
  • Если же дымовая труба находится более чем в трех метрах от конька — то должна быть не ниже линии, проведенной от конька под углом 10 градусов к горизонту.
  • Если пристроены более высокие здания — трубу необходимо выводить выше них.
  • Если рядом с дымоходами расположены вытяжные каналы — высоту вытяжки следует принимать не менее высоты этих труб.

Вариант установки дымохода

Важно! Согласно требованиям СНиП, стальные трубопроводы можно использовать только при температуре перемещаемого воздуха менее 500℃. В угольных печах использование металлических труб запрещено!

Нарушение вентиляции

На вентиляции стоит остановиться подробнее. Если об остальных проблемах большинство людей знают или догадываются, то про вентиляцию обычно забывают. Часто проблемы возникают из-за второго этажа в бане, например, когда выброс продуктов горения расположен слишком близко к окнам второго этажа. Встречающиеся потоки воздуха создают избыточное давление, что мешает нормальной тяге.

Читайте также:
Необычная «наперстянка» Реймания: выращивание из семян, посадка и уход

Вентиляционные каналы в дымовой трубе

Часто забывают и о вентиляции в самой котельной. Сейчас везде стоят пластиковые окна, которые очень герметичны и совсем не пропускают наружный воздух. Если они закрыты и нет никаких приточных отверстий, то при горении печки через какой-то промежуток времени в комнате возникнет критическое разряжение, и небольшие потоки воздуха будут периодически врываться через трубу. Это явление крайне неприятно и следует позаботиться о достаточной вентиляции заранее. В некоторых случаях естественной вентиляции недостаточно и требуется установить вентилятор, ведь с механическим побуждением воздухообмен проходит активней и недостатка в кислороде не будет.

Внешние факторы

Если долго не пользоваться печкой (например, летом), в трубе могут свить гнезда птицы или построить улей шершни. Такое явление очень распространено, поэтому важно каждый раз перед началом отопительного сезона проверять дымоход. При визуальном осмотре внутренней стороны дымовой трубы, можно также обнаружить большое количество налипшей сажи, которая создает дополнительное сопротивление. К сожалению, дымоходные каналы не вечны, и со временем они способны разрушаться, что также необходимо периодически контролировать.

Проверка и чистка дымоходных каналов

Часто причиной ухудшения тяги становятся изменившиеся погодные условия, такие как туман, дождь или резкие порывы ветра. Завихрение потоков воздуха рядом с выходом дымовой трубы создает дополнительное сопротивление. Такие явления не только ухудшают тягу, но и могут вызвать ее опрокидывание.

Решение проблемы с обратной тягой

Теперь необходимо проверить тягу. Можно воспользоваться специальным прибором, который замеряет скорость воздушного потока — анемометром. Зачастую такого прибора нет, тогда можно воспользоваться народными методами, например, поднести горящую спичку или лист бумаги и увидеть направление движения воздуха. Кроме того, качество тяги можно определить по цвету пламени в печи:

  • белый или очень светлый цвет — признак недостаточной тяги;
  • если пламя ровного золотистого цвета — тяга нормальная;
  • темные оттенки апельсинового цвета — недостаточная.

Золотистое пламя в печи — показатель нормальной тяги

Если печь находится внутри дома — тяга будет лучше, чем, если она расположена у внешней стены.

Основные способы решения проблем с тягой:

  1. Улучшение качества дымовой трубы.
    В первую очередь, чтобы улучшить тягу дымохода. Для этого необходимо проверить весь канал на предмет налипания сажи и негерметичности соединения стыков. Все нужно почистить и исправить. Если это не помогло, переходим к следующему способу.
  2. Установка дефлектора на конце трубы.
    Способ хорош, когда воздушные потоки вокруг трубы постоянные и сильные. Дефлектор отлично увеличивает тягу, однако, без ветра дефлектор бесполезен. В некоторых случаях он даже может уменьшать тягу из-за создания дополнительного сопротивления движению воздуха из канала.
  3. Увеличение длины дымохода.
    Простое и быстрое решение. Главное — правильный расчет расположения канала относительно конька здания, а также анализ вероятности возникновения воздушных потоков в месте установки. Ведь даже дымоход длиной 10 метров, установленный в неправильном месте не решит проблемы.
  4. Установка регулятора тяги.
    Устройство компенсирует недостаток или избыток внутреннего давления в канале относительно внешнего. Регулятор позволяет поддерживать оптимальную температуру в печи за счет контроля над подачей воздуха в топку. С ним скорость воздушного потока постоянна, а значит, тяга стабильная и не зависит от внешних факторов (ветра, изменения давления и т.д.).

Типы дефлекторов для дымохода

Металлические дымоходы быстро нагреваются и быстро остывают, отчего холодный воздух часто опускается к печке. В кирпичных каналах такой проблемы нет, так что они более надежные.

Еще одно важное понятие — обратная тяга. Она возникает, когда сопротивление в дымоходах слишком велико (из-за близости конька здания, стоящих рядом высоких домов и т.д.). В таком случае воздух от огня идет по пути наименьшего сопротивления, то есть в помещение, то есть необходимая нам тяга пропадает вовсе. Еще существует термин «опрокидывание тяги» — движущийся воздух меняет свое направление только на определенное время. Первые признаки возможно скорого возникновения опрокидывания тяги — образование большого количества дыма при горении, который, при открытии печки, врывается в комнату. Это значит, что тяга ухудшилась, а значит, и вовсе может стать обратной.

Способы устранения обратной тяги те же, что и для улучшения тяги. По сути, обратная тяга — это крайняя и самая неприятная степень плохой тяги, задымление помещения неприятно и даже опасно. Поэтому, в критическом случае, есть смысл обратиться к специалистам. Они быстро проанализируют все факторы и устранят проблему.

От достаточной тяги в дымоходе зависит безопасность и эффективность печного отопления. При обнаружении первых даже незначительных проблем, необходимо провести полную проверку системы для выявления причин неполадок и поиска способов увеличить тягу. Большую часть ремонтных и восстановительных работ можно провести своими руками, но, если уверенности в своих силах нет — необходимо пригласить специалиста.

Видео по теме:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: